Atomic Simulations for Packing Changes of Nano-Sized Cu Clusters Embedded in the Febulk on Heating
Abstract
1. Introduction
2. Model and Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wasserman, G.; Wincierz, P. Einfluß von Abschreckspannungen auf die Änderung der Gitterkonstanten bei der Aushärtung von Eisen-Kupfer-Legierungen. Arch. Eisenheuuenw 1958, 29, 310. [Google Scholar] [CrossRef]
- Murayama, M.; Katayama, Y.; Hono, K. Microstructural Evolution in a 17-4 PH Stainless Steel after Aging at 400 °C. Metall. Mater. Trans. A 1999, 30, 345–353. [Google Scholar] [CrossRef]
- Yang, W.D. Reactor Materials, 2nd ed.; Atom Energy Pres: Beijing, China, 2006. [Google Scholar]
- Qian, G.; González-Albuixech, V.F.; Niffenegger, M. Comparison of K1 calculation methods. J. Nucl. Eng. Des. 2014, 270, 312. [Google Scholar] [CrossRef]
- Ortiz, C.J.; Caturla, M.J. Cascade damage evolution: Rate theory versus kinetic Monte Carlo simulations. J. Comput. Aided Mater. Des. 2007, 14, 171–181. [Google Scholar] [CrossRef]
- Ortiz, C.J.; Caturla, M.J.; Fu, C.C.; Willaime, F. Nucleation and Growth of Defects in He irradiated Fe using Rate Theory and Kinetic Monte Carlo Methods. Mrs Online Proceeding Libr. 2011, 908. [Google Scholar] [CrossRef]
- Gámez, L.; Martinez, E.; Perlado, J.M.; Cepas, P.; Caturla, M.J.; Victoria, M.; Marian, J.; Arévalo, C.; Hernández, M.; Gómez, D. Kinetic Monte Carlo modelling of neutron irradiation damage in iron. Fusion Eng. Des. 2007, 82, 2666–2670. [Google Scholar] [CrossRef]
- Sato, A.; Meshii, M. Recovery of irradiation-induced defects in high-purity iron and iron–carbon solid solutions. Phys. Status Solidi 1974, 22, 253–260. [Google Scholar] [CrossRef]
- Takaki, S.; Fuss, J.; Kuglers, H.; Dedek, U.; Schultz, H. The resistivity recovery of high purity and carbon doped iron following low temperature electron irradiation. Radiat. Effects 2006, 79, 87–122. [Google Scholar] [CrossRef]
- Miller, M.K.; Russell, K.F.; Sokolov, M.A.; Nanstad, R.K. APT characterization of irradiated high nickel RPV steels. J. Nucl. Mater. 2007, 361, 248. [Google Scholar] [CrossRef]
- Fujii, K.; Fukuya, K.; Nakata, N.; Hono, K.; Nagai, Y.; Hasegawa, M. Hardening and microstructural evolution in A533B steels under high-dose electron irradiation. J. Nucl. Mater. 2005, 340, 247058. [Google Scholar] [CrossRef]
- Miller, M.K.; Russell, K.F. Embrittlement of RPV steels: An atom probe tomography perspective. J. Nucl. Mater. 2007, 371, 145. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, Y.C.; Liu, X.B.; Wang, R.S.; Nagai, Y.; Inoue, K.; Shimizu, Y.; Toyama, T. Microstructural evolution of RPV steels under proton and ion irradiation studied by positron annihilation spectroscopy. J. Nucl. Mater. 2015, 458, 326–334. [Google Scholar] [CrossRef]
- Ardekani, S.F.G.; Hadad, K. Monte Carlo evaluation of neutron irradiation damage to the VVER-1000 RPV. Nucl. Energy Technol. 2017, 3, 73–80. [Google Scholar] [CrossRef]
- Nie, J.; Liu, Y.; Xie, Q.; Liu, Z. Study on the irradiation effect of mechanical properties of RPV steels using crystal plasticity model. Nucl. Eng. Technol. 2019, 51, 501–509. [Google Scholar] [CrossRef]
- Xu, G.; Cai, L. Study On the precipitation of cu–rich clusters in the RPV model steel by APT. Acta Metall. Sin. 2012, 48, 407–413. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, B. Precipitation and Structural Evolution of Copper-Rich Nano Phases in Reactor Pressure Vessel Model Steels; School of Shanghai University: Shanghai, China, 2011. [Google Scholar]
- Hu, S.Y.; Li, Y.L.; Watanabe, K. Calculation of internal stresses around Cu precipitates in the bcc Febulk by atomic simulation. Model. Simul. Mater. Sci. Eng. 1999, 7, 641–655. [Google Scholar] [CrossRef]
- Monzen, R.; Jenkins, M.L.; Sutton, A.P. The bcc-to-9R martensitic transformation of Cu precipitates and the relaxation of elastic strains in an Fe-Cu alloy. Philos. Mag. A 2000, 80, 711–723. [Google Scholar] [CrossRef]
- Lee, T.H.; Kim, Y.O.; Kim, S.J. Crystallographic model for bcc-to-9R martensitic transformation of Cu precipitates in ferritic steel. Philos. Mag. 2007, 87, 209–224. [Google Scholar] [CrossRef]
- Becquart, C.S.; Domain, C. Solute–point defect interactions in bcc systems: Focus on first principles modelling in W and RPV steels. Curr. Opin. Solid State Mater. Sci. 2012, 16, 115–125. [Google Scholar] [CrossRef]
- Mendelev, M.I.; Han, A.; Srolovitz, D.J.; Ackland, G.J.; Sun, D.Y.; Asta, M. Asta.Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag. A 2003, 83, 3977. [Google Scholar] [CrossRef]
- Mishin, Y.; Mehl, M.J.; Papaconstantopoulos, D.A.; Voter, A.F.; Kress, J.D. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 2001, 63, 224106. [Google Scholar] [CrossRef]
- Voter, A.F.; Chen, S.P. Accurate Interatomic Potentials for Ni, Al and Ni3Al.Mater. Res. Soc. Symp. Proc. 1987, 82, 175. [Google Scholar] [CrossRef]
- Pasianot, R.C.; Malerba, L. Interatomic potentials consistent with thermodynamics: The Fe–Cu system. Nucl. Mater. 2007, 360, 118. [Google Scholar] [CrossRef]
- Bonny, G.; Pasianot, R.C.; Malerba, L. Fitting interatomic potentials consistent with thermodynamics: Fe, Cu, Ni and their alloys. J. Philos. Mag. 2009, 89, 3451–3464. [Google Scholar] [CrossRef]
- Bonny, G.; Pasianot, R.C.; Castin, N.; Malerba, L. Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing. Philog. Mag. 2009, 89, 3531–3546. [Google Scholar] [CrossRef]
- Cai, L.; Xu, G. Deformation Characterization of Nano-Scale Cu-Rich Precipitates in Reactor Pressure Vessel Model Steel. J. Shanghai Univ. 2012, 18, 311–316. [Google Scholar]
- Fujii, K.; Fukuya, K. Characterization of defect clusters in ion-irradiated A533B steel. Nucl. Mater. 2005, 336, 323–330. [Google Scholar] [CrossRef]
- Ackland, G.J.; Bacon, D.J.; Calder, A.F.; Harry, T. Computer simulation of point defect properties in dilute Fe—Cu alloy using a many-body interatomic potential. Philos. Mag. A 1997, 75, 713–732. [Google Scholar] [CrossRef]
- Domain, C.; Becquart, C.S. Computer simulation of point defect properties in dilute Fe—Cu alloy using a many-body interatomic potential. Phys. Rev. B 2001, 65, 024103. [Google Scholar] [CrossRef]
- Shu, X.; Li, X. Fe self-diffusion and Cu and Ni diffusion in bulk and grain boundary of Fe: A molecular dynamics study. Nucl. Instrum. Methods Phys. Res. B 2013, 307, 37–39. [Google Scholar] [CrossRef]
- Messina, L.; Chiapetto, M. An object kinetic Monte Carlo model for the microstructure evolution of neutron-irradiated reactor pressure vessel steels. Phys. Status Solidi A 2016, 213, 2974–2980. [Google Scholar] [CrossRef]
- Bonny, G.; Pasianot, R.C.; Malerba, L. Fe–Ni many-body potential for metallurgical applications. Simul. Mater. Sci. Eng. 2009, 17, 025010. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Zhang, L.; Du, L. Atomic Simulations for Packing Changes of Nano-Sized Cu Clusters Embedded in the Febulk on Heating. Metals 2021, 11, 934. https://doi.org/10.3390/met11060934
Yu P, Zhang L, Du L. Atomic Simulations for Packing Changes of Nano-Sized Cu Clusters Embedded in the Febulk on Heating. Metals. 2021; 11(6):934. https://doi.org/10.3390/met11060934
Chicago/Turabian StyleYu, Peng, Lin Zhang, and Linxiu Du. 2021. "Atomic Simulations for Packing Changes of Nano-Sized Cu Clusters Embedded in the Febulk on Heating" Metals 11, no. 6: 934. https://doi.org/10.3390/met11060934
APA StyleYu, P., Zhang, L., & Du, L. (2021). Atomic Simulations for Packing Changes of Nano-Sized Cu Clusters Embedded in the Febulk on Heating. Metals, 11(6), 934. https://doi.org/10.3390/met11060934