A Study on the Reduction Behavior of FeO by Analyzing Pore Characteristics Using the Labyrinth Coefficient at High Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Analysis of Reduction Behavior
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turkdogan, E.T.; Vinter, J.V. Gaseous reduction of iron oxides: Part III. Reduction-oxidation of porous and dense iron oxide and iron. Metall. Trans. 1972, 3, 1561–1574. [Google Scholar] [CrossRef]
- El-Geassy, A.A.; Rajakumar, V. Gaseous Reduction of Wustite with H2, CO and H2-CO Mixture. Trans. ISIJ 1985, 25, 449–458. [Google Scholar] [CrossRef] [Green Version]
- El-Geassy, A.A. Gaseous reduction of Fe2O3 compacts at 600 to 1050 °C. J. Mater. Sci. 1986, 21, 3889–3900. [Google Scholar] [CrossRef]
- Piotrowski, K.; Mondal, K.; Lorethova, H.; Stonawski, L.; Sztmanski, T.; Wiltowski, T. Effect of gas composition on the kinetic of iron oxide reduction in a hydrogen production process. Int. J. Hydrogen Energy 2005, 30, 1543–1554. [Google Scholar] [CrossRef]
- Olsson, R.G.; Mckewan, W.M. Diffusion of H2-H2O through porous iron formed by the reduction of iron oxides. Metall. Trans. 1970, 1, 1507–1512. [Google Scholar] [CrossRef]
- Bustnes, J.A. Kinetic studies of the reduction of FeO and FeWO4 by hydrogen. Metall. Mater. Trans. B 1997, 28B, 613–618. [Google Scholar] [CrossRef]
- Pineau, A.; Kanari, N.; Gaballah, I. Kinetics of reduction of iron oxides by H2 part I: Low temperature reduction of hematite. Thermochim. Acta 2006, 447, 89–100. [Google Scholar] [CrossRef]
- Pineau, A.; Kanari, N.; Gaballah, I. Kinetics of reduction of iron oxides by H2 part II: Low temperature reduction of magnetite. Thermochim. Acta 2007, 456, 75–88. [Google Scholar] [CrossRef]
- Yamashita, T.; Nakada, T.; Nagata, K. In-situ observation of Fe0.94O reduction at high temperature with the use of optical microscopy. Metall. Mater. Trans. B 2007, 38B, 185–191. [Google Scholar]
- El-geassy, A.A. Gaseous reduction of MgO-doped Fe2O3 compacts with carbon-monoxide at 1173–1473 K. ISIJ Int. 1996, 36, 1328–1337. [Google Scholar] [CrossRef] [Green Version]
- El-geassy, A.A. Influence of doping with CaO and/or MgO on stepwise reduction of pure hematite compacts. Ironmak. Steelmak. 1999, 26, 41–52. [Google Scholar] [CrossRef]
- Paananen, T.; Heinanen, K.; Harikki, J. Degradation of iron oxide caused by alumina during reduction from magnetite. ISIJ Int. 2003, 43, 597–605. [Google Scholar] [CrossRef]
- Inami, T.; Suzuki, K. Effect of SiO2 and Al2O3 on the lattice parameter and CO gas reduction of CaO-containing dense wustite. ISIJ Int. 2003, 43, 314–320. [Google Scholar] [CrossRef]
- Scarlett, N.V.Y.; Pownceby, M.I.; Madsen, I.C.; Christensen, A.N. Reaction sequences in the formation of silico-ferrites of calcium and aluminum in iron ore sinter. Metall. Mater. Trans. B 2004, 35B, 929–936. [Google Scholar] [CrossRef]
- El-geassy, A.A.; Nasr, M.I.; Omar, A.A.; Mousa, E.A. Influence of SiO2 and/or MnO2 on the reduction behavior and structure changes of Fe2O3 compacts with CO gas. ISIJ Int. 2008, 48, 1359–1367. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Yi, L.; Jiang, T. Mechanisms of strength decrease in the initial reduction of iron ore oxide pellets. Powder Technol. 2012, 221, 284–291. [Google Scholar] [CrossRef]
- Turkdogan, E.T.; Olsson, R.G.; Vinters, J.V. Gaseous reduction of iron oxides: Part II. Pore characteristic of iron reduced from hematite in hydrogen. Metall. Trans. 1971, 2, 3189–3196. [Google Scholar] [CrossRef]
- Matthew, S.P.; Cho, T.R.; Hayes, P.C. Mechanisms of porous iron growth on wustite and magnetite during gaseous reduction. Metall. Trans. B 1990, 21B, 733–741. [Google Scholar] [CrossRef]
- Bahgat, M.; Halim, K.S.; Nasr, M.I.; El-geassy, A.A. Morphological changes accompanying gaseous reduction of SiO2 doped wustite compacts. Ironmak. Steelmak. 2008, 35, 205–212. [Google Scholar] [CrossRef]
- Kim, W.H.; Lee, Y.S.; Suh, I.K.; Min, D.J. Influence of CaO and SiO2 on the reducibility of wustite using H2 and CO gas. ISIJ Int. 2012, 52, 1463–1471. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Asada, M.; Kawakami, M. TEM observation MgO- or CaO-bearing wustite solid solution reduced to iron by hydrogen. Tetsu Hagane 1998, 84, 471–476. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, K. Determination of pore size and pore size distribution 1. Adsorbents and catalysts. J. Membrane Sci. 1994, 96, 54–89. [Google Scholar] [CrossRef]
- Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.H.; Pernicone, N.; Ramsay, J.D.F.; Sing, K.S.W.; Unger, K.K. Recommendations for the characterization of porous solids. Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Kubaschewski, O.; Alcock, C.B. Metallurgical Thermochemistry, 5th ed.; Pergamon Press: Oxford, UK, 1979; p. 362. [Google Scholar]
- El-geassy, A.A. Rate controlling step in the reduction of iron oxides; Kinetics and mechanism of wustite-iron step in H2, CO and H2/CO gas mixtures. IOP Conf. 2017, 229, 1–10. [Google Scholar] [CrossRef]
- Szeckely, J.; Evans, J.W.; Sohn, H.Y. Gas-Solid Reaction; Academic Press: New York, NY, USA, 1976; pp. 125–147. [Google Scholar]
- Yagi, T.; Ono, Y. A method of analysis for reduction of iron oxide in mixed-control kinetics. ISIJ Int. 1968, 8, 377–381. [Google Scholar] [CrossRef]
- Murayama, T.; Ono, Y. Method of determination of parameters included in Ishida-Wen’s model. Tetsu Hagane 1987, 10, 1323–1328. [Google Scholar] [CrossRef] [Green Version]
- Kamijo, C. Method of estimation of reduction rate constant in Ishida-Wen’s model for FeO-Al2O3 briquette. ISIJ Int. 2017, 57, 1797–1803. [Google Scholar] [CrossRef] [Green Version]
Sample Name | FeO (g) | FeCl2 (g) | Initial FeCl2 Contents (Cl2 Contents) (wt%) | Temperature (K) | Residual Cl Contents (ppm) |
---|---|---|---|---|---|
0FeCl2 | 1.00 | - | - | - | - |
2FeCl2 | 0.98 | 0.02 | 2 (1.12) | 1073 | 170 |
1173 | 93 | ||||
1273 | 70 | ||||
5FeCl2 | 0.95 | 0.05 | 5 (2.80) | 1073 | 336 |
1173 | 232 | ||||
1273 | 183 | ||||
9FeCl2 | 0.91 | 0.09 | 9 (5.03) | 1073 | 1836 |
1173 | 332 | ||||
1273 | 315 |
Initial Cl Contents (wt%) | Porosity (%) | ||||
---|---|---|---|---|---|
1073 K | 1123 K | 1173 K | 1223 K | 1273 K | |
0 | 23.9 | 23.9 | 23.9 | 23.9 | 23.9 |
2 | 25.8 | 26.0 | 26.6 | 28.5 | 28.4 |
5 | 27.5 | 28.5 | 31.6 | 31.6 | 32.8 |
9 | 29.2 | 32.1 | 35.5 | 34.2 | 36.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.G.; Min, D.J. A Study on the Reduction Behavior of FeO by Analyzing Pore Characteristics Using the Labyrinth Coefficient at High Temperature. Metals 2021, 11, 414. https://doi.org/10.3390/met11030414
Shin SG, Min DJ. A Study on the Reduction Behavior of FeO by Analyzing Pore Characteristics Using the Labyrinth Coefficient at High Temperature. Metals. 2021; 11(3):414. https://doi.org/10.3390/met11030414
Chicago/Turabian StyleShin, Sang Gyun, and Dong Joon Min. 2021. "A Study on the Reduction Behavior of FeO by Analyzing Pore Characteristics Using the Labyrinth Coefficient at High Temperature" Metals 11, no. 3: 414. https://doi.org/10.3390/met11030414
APA StyleShin, S. G., & Min, D. J. (2021). A Study on the Reduction Behavior of FeO by Analyzing Pore Characteristics Using the Labyrinth Coefficient at High Temperature. Metals, 11(3), 414. https://doi.org/10.3390/met11030414