Effects of Sintering Temperature on Densification, Microstructure and Mechanical Properties of Al-Based Alloy by High-Velocity Compaction
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Effect of Sintering Temperature on Densification
3.2. Microstructure and Phases Constitution
3.3. Mechanical Property
3.4. Fractography
4. Conclusions
- For the green of Al-based alloy by HVC, the sintered density increased with the temperature increasing. When the compaction energy was 1885 J, the samples sintered at 640 °C with a relative density of 98%.
- XRD of the sintered sample displayed the phases Al13Fe4, Al13Cr2, Al3Ti, AlN, AlCr2. TEM further verified the existence of intermetallic compounds Al13Cr2, Al3Ti, and Al13Fe4.
- The tensile properties of the sintered samples at 640 °C reached the maximum, UTS 222 MPa, YS 160 MPa, and the maximum δ 2.6% when the sample was compacted by the energy 1885 J.
- Fracture mechanism of the Al-based alloy was ductility fracture.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joshi, T.C.; Prakash, U.; Dabhade, V.V. Microstructural development during hot forging of Al 7075 powder. J. Alloy. Compd. 2015, 639, 123–130. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Z.; Liu, X. Effect of sintering temperature on the microstructure and mechanical properties of Ti50Ni50 and Ti47Ni47Al6 intermetallic alloys. J. Alloy. Compd. 2013, 578, 373–379. [Google Scholar] [CrossRef]
- Dunnett, K.S.; Mueller, R.M.; Bishop, D.P. Development of Al-Ni-Mg-(Cu) aluminium P/M alloys. J. Mater. Process. Tech. 2008, 198, 31–40. [Google Scholar] [CrossRef]
- Harding, M.D.; Donaldson, I.W.; Hexemer, R.L., Jr. Characterization of the microstructure, mechanical properties, and shot peening response of an industrially processed Al-Zn-Mg-Cu PM alloy. J. Mater. Process. Tech. 2015, 221, 31–39. [Google Scholar] [CrossRef]
- Boland, C.D.; Hexemer, R.L., Jr.; Donaldson, I.W.; Bishop, D.P. Industrial processing of a novel Al-Cu-Mg powder metallurgy alloy. Mater. Sci. Eng. A. 2013, 559, 902–908. [Google Scholar] [CrossRef]
- Wang, L.D.; Wang, L.M.; Cao, Z.Y. Synthesis, microstructures and properties of Al89Fe8Ti2Zr1 alloy prepared by powder metallurgy and hot extrusion. Mater. Res. Innov. 2016, 19, 65–68. [Google Scholar] [CrossRef]
- Cooke, R.W.; Hexemer, R.L., Jr.; Donaldson, I.W.; Bishop, D.P. Press-and-sinter processing of a PM counterpart to wrought aluminium 2618. J. Mater. Process. Technol. 2016, 230, 72–79. [Google Scholar] [CrossRef]
- Harding, M.D.; Donaldson, I.W.; Hexemer, R.L., Jr.; Bishop, D.P. Effects of Post-Sinter Processing on an Al-Zn-Mg-Cu Powder Metallurgy Alloy. Metals 2017, 7, 370. [Google Scholar] [CrossRef]
- Gregory, A.W.S.; Mary, A.W.; Alan, T.; Richard, L.H.; Donaldson, I.W.; Bishop, D.P. Thermal Mechanical Processing of Press and Sinter Al-Cu-Mg-Sn-(AlN) Metal Matrix Composite Materials. Metals 2018, 8, 480. [Google Scholar] [CrossRef]
- Mann, R.E.D.; Hexemer, R.L., Jr.; Donaldson, I.W.; Bishop, D.P. Hot deformation of an Al-Cu-Mg powder metallurgy alloy. Mater. Sci. Eng. 2011, 528, 5476–5483. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, X.J.; Zhang, K. Quantitative investigation into the relation between force chains and stress transmission during high-velocity compaction of powder. J. Korean Phys. Soc. 2019, 74, 660–673. [Google Scholar] [CrossRef]
- Yuan, X.J.; Yin, H.Q.; Dill, R.U.; Khan, D.F.; Qu, X.H. Study on the impact force and green properties of high-velocity compacted aluminium alloy powder. Int. J. Min. Metall. Mater. 2012, 19, 1107–1113. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Zhang, L.; Dong, G.Q.; Liu, Z.W.; Qin, M.L.; Qu, X.H.; Lü, Y.Z. Effects of annealing on high velocity compaction behavior and mechanical properties of iron-base PM alloy. Powder Technol. 2016, 288, 435–440. [Google Scholar] [CrossRef]
- Zhang, K.Q.; Yin, H.Q.; Jiang, X.; Liu, X.Q.; He, F.; Deng, Z.H.; Khan, D.F.; Zheng, Q.J.; Qu, X.H. A novel approach to predict green density by high-velocity compaction based on the materials informatics method. Int. J. Min. Metall. Mater. 2019, 2, 194–201. [Google Scholar] [CrossRef]
- You, D.D.; Liu, D.H.; Guan, H.J.; Huang, Q.Y.; Xiao, Z.Y.; Chao, Y. A Control Method of High impact energy and cosimulation in powder high-velocity compaction. Adv. Mater. Sci. Eng. 2018, 2010, 1–11. [Google Scholar] [CrossRef]
- Wang, Z.; Prashanth, K.G.; Zhang, W.W.; Scudino, S.; Eckert, J. Removing the oxide layer in a nanostructured aluminium alloy by localshear deformation between nanoscale phases. Powder Technol. 2019, 343, 733–737. [Google Scholar] [CrossRef]
- Ibrahim, A.; Bishop, D.P.; Kipouros, G.J. Sinterability and characterization of commercial aluminium powder metallurgy alloy Alumix 321. Powder Technol. 2015, 279, 106–112. [Google Scholar] [CrossRef]
- Huang, P.Y. Principle of Powder Metallurgy, 2nd ed.; Metallurgical Industry Press: Beijing, China, 2011. [Google Scholar]
- Zhang, G.; Feng, K.; Li, Y. Effects of sintering process on preparing iron-based friction material directly from vanadium-bearing titanomagnetite concentrates. Mater. Des. 2015, 86, 616–620. [Google Scholar] [CrossRef]
- Yuan, X.J.; Qu, X.H.; Yin, H.Q.; Yan, Z.W.; Tan, Z.J. Effects of compaction velocity on the sinterability of Al-Fe-Cr-Ti PM alloy. Materials 2019, 12, 3005. [Google Scholar] [CrossRef]
- German, R.M. Powder Metallurgy and Particulate Materials Processing, 3rd ed.; Sintering concepts; Metal Powder Industries Federation: Princeton, NJ, USA, 2005. [Google Scholar]
- Hao, G.L.; Li, X.Y.; Wang, W.G. Low frequency damping behavior associated with sintering process in Al powder compact. Trans. Nonferrous Metal. Soc. 2016, 26, 1176–1182. [Google Scholar] [CrossRef]
- Mosher, W.G.; Kipouros, G.J.; Caley, W.F.; Bishop, D.P. On development of hypoeutectic aluminium-silicon powder metallurgy alloy. Powder Metall. 2011, 54, 432–439. [Google Scholar] [CrossRef]
- Galano, M.; Audebert, F.; Stone, I.C.; Cantor, B. Nanoquasicrystalline Al-Fe-Cr-based alloys, Part I: Phase transformations. Acta Mater. 2009, 57, 5107–5119. [Google Scholar] [CrossRef]
- Trunov, M.A.; Schoenitz, M.; Zhu, X.; Dreizin, E.L. Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust. Flame 2005, 140, 310–318. [Google Scholar] [CrossRef]
- Cao, L.; Zeng, W.; Xie, Y.; Liang, J.; Zhang, D. Effect of powder oxidation on interparticle boundaries and mechanical properties of bulk Al prepared by spark plasma sintering of Al powder. Mater. Sci. Eng. A. 2019, 742, 305–308. [Google Scholar] [CrossRef]
- Schaffer, G.B.; Huo, S.H.; Drennan, J.; Auchterlongie, G.J. The effect of trace elements on the sintering of an Al-Zn-Mg-Cu alloy. Acta Mater. 2001, 49, 2671–2678. [Google Scholar] [CrossRef]
- Yan, M.; Yu, P.; Schaffer, G.B.; Qian, M. Secondary phases and interfaces in a nitrogen-atmosphere sintered Al alloy: Transmission electron microscopy evidence for the formation of AlN during liquid phase sintering. Acta Mater. 2010, 58, 5667–5674. [Google Scholar] [CrossRef]
- Li, H.; Yin, H.Q.; Khan, D.F.; Cao, H.Q.; Abideen, Z.; Qu, X.H. High velocity compaction of 0.9Al2O3/Cu composite powder. Mater. Des. 2014, 57, 546–550. [Google Scholar] [CrossRef]
- Galano, M.; Marsh, A.; Audebert, F.; Xu, W.; Ramundo, M. Nanoquasicrystalline Al-based matrix/γ-Al2O3 nanocomposites. J. Alloy. Compd. 2015, 643, S99–S106. [Google Scholar] [CrossRef]
Element | Phase | Al | Ti | Cr | Fe |
---|---|---|---|---|---|
Atomic% | 1 | 87.94 | 2.08 | 6.88 | 3.10 |
Atomic% | 2 | 77.52 | 0.37 | 0.75 | 21.36 |
Atomic% | 3 | 77.64 | 21.41 | 0.74 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Qu, X.; Yin, H.; Feng, Z.; Tang, M.; Yan, Z.; Tan, Z. Effects of Sintering Temperature on Densification, Microstructure and Mechanical Properties of Al-Based Alloy by High-Velocity Compaction. Metals 2021, 11, 218. https://doi.org/10.3390/met11020218
Yuan X, Qu X, Yin H, Feng Z, Tang M, Yan Z, Tan Z. Effects of Sintering Temperature on Densification, Microstructure and Mechanical Properties of Al-Based Alloy by High-Velocity Compaction. Metals. 2021; 11(2):218. https://doi.org/10.3390/met11020218
Chicago/Turabian StyleYuan, Xianjie, Xuanhui Qu, Haiqing Yin, Zaiqiang Feng, Mingqi Tang, Zhenwei Yan, and Zhaojun Tan. 2021. "Effects of Sintering Temperature on Densification, Microstructure and Mechanical Properties of Al-Based Alloy by High-Velocity Compaction" Metals 11, no. 2: 218. https://doi.org/10.3390/met11020218
APA StyleYuan, X., Qu, X., Yin, H., Feng, Z., Tang, M., Yan, Z., & Tan, Z. (2021). Effects of Sintering Temperature on Densification, Microstructure and Mechanical Properties of Al-Based Alloy by High-Velocity Compaction. Metals, 11(2), 218. https://doi.org/10.3390/met11020218