Effects of BaO and B2O3 on the Absorption of Ti Inclusions for High Titanium Steel
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Apparatus and Method
3. Results and Discussion
3.1. Mass Transfer Coefficient
3.2. Phase of Mold Flux
3.3. Activity Model of a(CaO)
3.4. Intermediate Reaction Layer
4. Conclusions
- (1)
- With the addition of BaO in the mold flux, the mass transfer coefficient of TiO2 increased by 32.7% and the mass transfer coefficient of TiN increased by 42.7%. With the addition of B2O3 in the mold flux, the mass transfer coefficient of TiO2 increased by 62.9% and the mass transfer coefficient of TiN increased by 78.0%. The addition of BaO or B2O3 in the mold flux is beneficial to the absorption of TiO2 and TiN inclusions.
- (2)
- The mass transfer rate of TiO2 and TiN in the mold flux with B2O3 is higher than that of BaO. The mass transfer coefficient of TiO2 in the mold flux is greater than that of TiN.
- (3)
- The way of absorbing inclusions is different for mold fluxes containing BaO or B2O3. TiO2 and CaO combine to form CaTiO3 in the mold flux containing BaO, while titanium inclusions still existsin the form of TiO2 in the mold flux containing B2O3.
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, S.; Zhang, H. Incoloy 825 Corrosion Resistant Alloy. Sichuan Metall. 2004, 6, 28–30. [Google Scholar]
- Zheng, H.; Chen, W.; Chen, H.; Li, Z. A Study on Floater in Mould during Concasting Ti Stabilized Stainless Steel 321. Spec. Steel 2004, 25, 50–52. [Google Scholar]
- Mukongo, T.; Pistorius, P.C.; Garbers-Craig, A.M. Viscosity effect of titanium pickup by mould fluxes for stainless steel. Ironmak. Steelmak. 2004, 31, 135–143. [Google Scholar] [CrossRef]
- Sharan, A.; Jimbo, I.; Cramb, A.W. Fundamental Aspects of the Casting of Titanium Treated Steels. Trans. Iron Steel Soc. 1995, 16, 95–99. [Google Scholar]
- Yin, X.; Sun, Y.; Yang, Y.; Bai, X.; Barati, M.; Mclean, A. Formation of Inclusions in Ti-Stabilized 17Cr Austenitic Stainless Steel. Metall. Mater. Trans. B 2016, 47, 1–11. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Lee, H.-G.; Kim, J.-S. Dissolution Rate of Al2O3 into Molten CaO-SiO2-Al2O3 Slags. ISIJ Int. 2002, 42, 852–860. [Google Scholar] [CrossRef]
- Bui, A.-H.; Ha, H.-M.; Kang, Y.-B.; Chung, I.-S.; Lee, H.-G. Dissolution Behavior of Alumina in Mold Fluxes for Steel Continuous Casting. Met. Mater. Int. 2005, 11, 183–190. [Google Scholar] [CrossRef]
- Bui, A.-H.; Ha, H.-M.; Chung, I.-S.; Lee, H.-G. Dissolution Kinetics of Alumina Into Mold Fluxes for Continuous Steel Casting. ISIJ Int. 2005, 45, 1856–1863. [Google Scholar] [CrossRef]
- Park, J.-H.; Jung, I.-H.; Lee, H.-G. Dissolution behavior of Al2O3 and MgO inclusions in the CaO-Al2O3-SiO2 slags: Formation of ring-like structure of MgAl2O4 and Ca2SiO4 around MgO inclusions: Formation of Ring-like Structure of MgAl2O4 and Ca2SiO4 around MgO Inclusions. ISIJ Int. 2006, 46, 1626–1634. [Google Scholar] [CrossRef] [Green Version]
- Li, J.L.; Shu, Q.F.; Liu, Y.A.; Chou, K.C. Dissolution rate of Al2O3 into molten CaO-Al2O3-CaF2 flux. Ironmak. Steelmak. 2014, 41, 732–737. [Google Scholar] [CrossRef]
- Ren, Z.; Hu, X.; Hou, X.; Xue, X.; Chou, K. Dissolution and diffusion of TiO2 in the CaO-Al2O3-SiO2 slag. Int. J. Miner. Metall. Mater. 2014, 21, 345–352. [Google Scholar] [CrossRef]
- Hao, Z.; Chen, W.; Lippod, C.; Seong, K.K. A Study on Kinetics of TiO2 Inclusion Absorbed by Mold Fluxes. Spec. Steel 2009, 30, 13–15. [Google Scholar]
- Wang, Z.; Sohn, I. Effect of substituting CaO with BaO on the viscosity and structure of CaO-BaO-SiO2-MgO-Al2O3 slags. J. Am. Ceram. Soc. 2018, 101, 4285–4296. [Google Scholar] [CrossRef]
- Kim, T.S.; Park, J.H. Viscosity-structure relationship of alkaline earth silicate melts containing manganese oxide and calcium fluoride. J. Am. Ceram. Soc. 2019, 102, 4943–4955. [Google Scholar] [CrossRef]
- Yu, X.; Wen, G.; Tang, P.; Wang, H. Effect of B2O3 on the physico-chemical properties of mold slag used for high-Al steel. J. Chongqing Univ. 2011, 34, 66–71. [Google Scholar]
- Huang, X. Principles of Iron and Steel Metallurgy; Metallurgical Industry Press: Beijing, China, 2013. [Google Scholar]
- Zhang, J. On coexistence theory of slag structure. J. Beijing Inst. Iron Steel 1984, 1, 21–29. [Google Scholar]
- Yang, X.; Shi, C.; Zhang, M.; Zhang, J. A Thermodynamic Model for Prediction of Iron Oxide Activity in Some FeO-Containing Slag Systems. Steel Res. Int. 2012, 83, 244–258. [Google Scholar] [CrossRef]
- Turkdogan, E.T. Physical Chemistry of High Temperature Technology; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Barin, J.; Knacke, O.; Kubaschewski, O. Thermochemical Properties of Inorganic Substances; Springer-Verlag Press: New York, NY, USA, 1977. [Google Scholar]
- Barin, I.; Platzki, G. Thermochemical Data of Pure Substances; Wiley-vch Verlag Gmbh Press: Weinheim, Germany, 1995. [Google Scholar]
- Zheng, H. Clogging of Ti-bearing Stainless Steel and Floater in Mold. Baosteel Technol. 2008, 1, 50–54. [Google Scholar]
Sample | CaO | SiO2 | Al2O3 | MgO | Na2O | CaF2 | BaO | B2O3 | Viscosity at 1623 K (Poise) |
---|---|---|---|---|---|---|---|---|---|
1# | 30 | 30 | 15 | 5 | 10 | 10 | - | - | 0.465 |
2# | 30 | 30 | 15 | 5 | 10 | 10 | 5 | - | 0.421 |
3# | 30 | 30 | 15 | 5 | 10 | 10 | 10 | - | 0.411 |
4# | 30 | 30 | 15 | 5 | 10 | 10 | 15 | - | 0.421 |
5# | 30 | 30 | 15 | 5 | 10 | 10 | - | 5 | 0.399 |
6# | 30 | 30 | 15 | 5 | 10 | 10 | - | 10 | 0.300 |
7# | 30 | 30 | 15 | 5 | 10 | 10 | - | 15 | 0.262 |
Item | Structural Units as Ion Couples or Molecules | Mole Number of Structural Unit n i /mol | Mass Action Concentration of Structural Unit or Ion Couple N i (—) |
---|---|---|---|
Simple cation | Ca2+ + O2− | ||
- | Na2+ + O2− | ||
- | Mg2+ + O2− | ||
- | Ca2+ + 2F− | ||
- | Ba2+ + O2− | ||
Simple molecule | SiO2 | ||
- | Al2O3 | ||
Complex molecule | CaO·SiO2 | ||
- | 2CaO·SiO2 | ||
- | 3CaO·SiO2 | ||
- | 3CaO·2SiO2 | ||
- | CaO·Al2O3 | ||
- | CaO·2Al2O3 | ||
- | CaO·6Al2O3 | ||
- | 3CaO·Al2O3 | ||
- | 12CaO·7Al2O3 | ||
- | 3Al2O3·2SiO2 | ||
- | Na2O·SiO2 | ||
- | Na2O·2SiO2 | ||
- | 2Na2O·SiO2 | ||
- | MgO·SiO2 | ||
- | 2MgO·SiO2 | ||
- | BaO·SiO2 | ||
- | BaO·2SiO2 | ||
- | 2BaO·SiO2 | ||
- | 2BaO·3SiO2 | ||
- | Na2O·Al2O3 | ||
- | Na2O·3Al2O3 | ||
- | Na2O·9Al2O3 | ||
- | MgO·Al2O3 | ||
- | BaO·Al2O3 | ||
- | 3BaO·Al2O3 | ||
- | CaO·Al2O3·2SiO2 | ||
- | 2CaO·Al2O3·SiO2 | ||
- | 2Na2O·CaO·3SiO2 | ||
Na2O·CaO·5SiO2 | |||
- | Na2O·2CaO·3SiO2 | ||
- | Na2O·3CaO·6SiO2 | ||
- | CaO·MgO·SiO2 | ||
- | CaO·MgO·2SiO2 | ||
- | 2CaO·MgO·2SiO2 | ||
- | 3CaO·MgO·2SiO2 | ||
- | 3CaO·2SiO2·CaF2 | ||
- | 3CaO·2Al2O3·CaF2 | ||
- | 11CaO·7Al2O3·CaF2 | ||
- | Na2O·Al2O3·4SiO2 | ||
- | Na2O·Al2O3·6SiO2 | ||
- | 2MgO·2Al2O3·SiO2 | ||
- | Na2O·MgO·4SiO2 | ||
- | Na2O·2MgO·6SiO2 |
Reactions | ΔGΘ/J·mol−1 | Ni |
---|---|---|
(Ca2++O2−) + (SiO2) = (CaO·SiO2) | −21,757 − 36.82T | |
2(Ca2++O2−) + (SiO2) = (2CaO·SiO2) | −102,090 − 24.27T | |
3(Ca2+ + O2−) + (SiO2) = (3CaO·SiO2) | −118,826 − 6.69T | |
3(Ca2+ + O2−) + 2(SiO2) = (3CaO·2SiO2) | −236,814 + 9.62T | |
(Ca2+ + O2−) + (Al2O3) = (CaO·Al2O3) | 59,413 − 59.41T | |
(Ca2+ + O2−) + 2(Al2O3) = (CaO·2Al2O3) | −16,700 − 25.52T | |
(Ca2+ + O2−) + 6(Al2O3) = (CaO·6Al2O3) | −22,594 − 31.80T | |
3(Ca2+ + O2−) + (Al2O3) = (3CaO·Al2O3) | −21,757 − 29.29T | |
12(Ca2+ + O2−) + 7(Al2O3) = (12CaO·7Al2O3) | 617,977 − 612.12T | |
3(Al2O3) + 2(SiO2) = (3Al2O3·2SiO2) | −4354.27 − 10.47T | |
(2Na+ + O2−) + (SiO2) = (Na2O·SiO2) | −299,348.7 + 55.32T | |
(2Na+ + O2−) + 2(SiO2) = (Na2O·2SiO2) | −279,093.8 + 23.19T | |
2(2Na+ + O2−) + (SiO2) = (2Na2O·SiO2) | −517,220.2 + 124.22T | |
(Mg2+ + O2−) + (SiO2) = (MgO·SiO2) | 23,849 − 29.71T | |
2(Mg2+ + O2−) + (SiO2) = (2MgO·SiO2) | −56,902 − 3.35T | |
(Ba2+ + O2−) + (SiO2) = (BaO·SiO2) | −145,604.8 + 10.5T | |
(Ba2+ + O2−) + 2(SiO2) = (BaO·2SiO2) | −145,585.8 + 34.2T | |
2(Ba2+ + O2−) + (SiO2) = (2BaO·SiO2) | −257,581.1 + 9.11T | |
2(Ba2+ + O2−) + 3(SiO2) = (2BaO·3SiO2) | −303,755.9 + 29.1T | |
(2Na+ + O2−) + (Al2O3) = (Na2O·Al2O3) | −247,970.8 + 44.6T | |
(2Na+ + O2−) + 3(Al2O3) = (Na2O·3Al2O3) | −282,626.4 + 35.28T | |
(2Na+ + O2−) + 9(Al2O3) = (Na2O·9Al2O3) | −295,918 + 25.18T | |
(Mg2+ + O2−) + (Al2O3) = (MgO·Al2O3) | −18,828 − 6.28T | |
(Ba2++O2−) + (Al2O3) = (BaO·Al2O3) | −124,300 + 6.69T | |
3(Ba2+ + O2) + (Al2O3) = (3BaO·Al2O3) | −212,100 + 18.83T | |
(Ca2+ + O2−) + (Al2O3) + 2(SiO2) = (CaO·Al2O3·2SiO2) | −13,816.44 − 55.26T | |
2(Ca2+ + O2−) + (Al2O3) + (SiO2) = (2CaO·Al2O3·SiO2) | −61,961 − 60.29T | |
2(2Na+ + O2−) + (Ca2+ + O2−) + 3(SiO2) = (2Na2O·CaO·3SiO2) | −672,019.9 + 62.8T | |
(2Na+ + O2−) + (Ca2+ + O2−) + 5(SiO2) = (Na2O·CaO·5SiO2) | −443,841.2 + 63.84T | |
(2Na+ + O2−) + 2(Ca2+ + O2−) + 3(SiO2) = (Na2O·2CaO·3SiO2) | −607,292.6 + 125.68T | |
(2Na+ + O2−) + 3(Ca2+ + O2−) + 6(SiO2) = (Na2O·3CaO·6SiO2) | −837,543.4 + 219.73T | |
(Ca2+ + O2−) + (Mg2+ + O2−) + (SiO2) = (CaO·MgO·SiO2) | −124,683 + 0.766T | |
(Ca2+ + O2−) + (Mg2+ + O2−) + 2(SiO2) = (CaO·MgO·2SiO2) | −80.333 − 51.882T | |
2(Ca2+ +O2−) + (Mg2+ + O2−) + 2(SiO2) = (2CaO·MgO·2SiO2) | −73,638 − 63.597T | |
3(Ca2+ + O2−) + (Mg2+ + O2−) + 2(SiO2) = (3CaO·MgO·2SiO2) | −205,016 − 31.798T | |
3(Ca2+ + O2−) + 2(SiO2) + (Ca2+ + 2F−) = (3CaO·2SiO2·CaF2) | −255,180 − 8.2T | |
3(Ca2+ + O2−) + 3(Al2O3) + (Ca2+ + 2F2−) = (3CaO·2Al2O3·CaF2) | −44,492 − 73.15T | |
11(Ca2+ + O2−) + 7(Al2O3) + (Ca2+ + 2F2−) = (11CaO·7Al2O3·CaF2) | −228,760 − 155.8T | |
(2Na+ + O2−) + (Al2O3) + 4(SiO2) = (Na2O·Al2O3·4SiO2) | −440,859.8 + 101.36T | |
(2Na+ + O2−) + (Al2O3) + 6(SiO2) = (Na2O·Al2O3·6SiO2) | −425,604 + 19.38T | |
2(Mg2+ + O2−) + 2(Al2O3) + 5(SiO2) = (2MgO·2Al2O3·5SiO2) | −14,422 − 14.81T | |
(2Na+ + O2−) + (Mg2+ + O2−) + 4(SiO2) = (Na2O·MgO·4SiO2) | −306,210.4 − 1.2T | |
(2Na+ + O2−) + 2(Mg2+ + O2−) + 6(SiO2) = (Na2O·2MgO·6SiO2) | −312,061.3 − 33.06T |
Element | Ca | Si | Al | Mg | Na | Ti | O | F | Ba |
---|---|---|---|---|---|---|---|---|---|
(a) | 18.19 | 0.26 | 0.27 | 0.08 | 1.50 | 20.27 | 57.65 | 1.77 | 0 |
(b) | 17.18 | 0.13 | 0.09 | 0.05 | 3.08 | 21.21 | 56.26 | 1.98 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Geng, X.; Jiang, Z.; Hou, Y.; Gong, W. Effects of BaO and B2O3 on the Absorption of Ti Inclusions for High Titanium Steel. Metals 2021, 11, 165. https://doi.org/10.3390/met11010165
Li B, Geng X, Jiang Z, Hou Y, Gong W. Effects of BaO and B2O3 on the Absorption of Ti Inclusions for High Titanium Steel. Metals. 2021; 11(1):165. https://doi.org/10.3390/met11010165
Chicago/Turabian StyleLi, Boyang, Xin Geng, Zhouhua Jiang, Yu Hou, and Wei Gong. 2021. "Effects of BaO and B2O3 on the Absorption of Ti Inclusions for High Titanium Steel" Metals 11, no. 1: 165. https://doi.org/10.3390/met11010165
APA StyleLi, B., Geng, X., Jiang, Z., Hou, Y., & Gong, W. (2021). Effects of BaO and B2O3 on the Absorption of Ti Inclusions for High Titanium Steel. Metals, 11(1), 165. https://doi.org/10.3390/met11010165