Interfacial Stability of TiC/γ-Fe in TiC/316L Stainless Steel Composites Prepared by Selective Laser Melting: First Principles and Experiment
Abstract
1. Introduction
2. Computational and Experimental Procedure
3. Results and Discussion
3.1. Experiment
3.2. Calculation and Simulation
3.2.1. Bulk and Surface Properties
Bulk Properties of TiC and γ-Fe
Surface Energy
3.2.2. Properties of the TiC/γ-Fe Interface
TiC (001) and γ-Fe (001) Interface
Adhesion Work
Interface Stability
Electronic Structure and Bonding
4. Analysis on TiC as Heterogeneous Nucleation of γ-Fe
5. Conclusions
- (1)
- The on-site interfaces have larger adhesion work and smaller interfacial energy compared with bridge-sited interfaces. The Ti centre interfaces also have larger adhesion work and smaller interfacial energy compared with C centre interfaces. Thus, the Fe-on-Ti centre interface is more stable with largest adhesion work (3.87 J/m2) and smallest interfacial energy (0.04 J/m2).
- (2)
- The interfacial energy of the Fe-on-Ti centre interface of TiC (001)/γ-Fe (001) is smaller than that of solid–liquid interface between the γ-Fe/Fe. The TiC particles can act as heterogeneous nucleation substrates for γ-Fe grains from crystallography.
- (3)
- The chemical bonding of Fe-on-C centre interface have metal characteristics. The interfacial bonding of Fe-on-Ti centre is mainly obvious Fe–C covalent bonding and shows the strongest adhesion strength.
Author Contributions
Funding
Conflicts of Interest
References
- AlMangour, B.; Grzesiak, D.; Borkar, T.; Yang, J. Densification behavior, microstructural evolution, and mechanical properties of TiC/316L stainless steel nanocomposites fabricated by selective laser melting. Mater. Des. 2018, 138, 119–128. [Google Scholar] [CrossRef]
- Dutta Majumdar, J.; Kumar, A.; Li, L. Direct laser cladding of SiC dispersed AISI 316L stainless steel. Tribol. Int. 2009, 42, 750–753. [Google Scholar] [CrossRef]
- Jankauskas, V.; Antonov, M.; Varnauskas, V.; Skirkus, R.; Goljandin, D. Effect of WC grain size and content on low stress abrasive wear of manual arc welded hardfacings with low-carbon or stainless steel matrix. Wear 2015, 328–329, 378–390. [Google Scholar] [CrossRef]
- Sulima, I.; Jaworska, L.; Figiel, P. Influence of Processing Parameters and Different Content of Tib2 Ceramics on the Properties of Composites Sintered by High Pressure -High Temperature (HP-HT) Method. Arch. Metall. Mater. 2014, 59, 205–209. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, X.; Zhao, G. Microstructure and formation mechanism of in-situ TiC-TiB2/Fe composite coating. T. Nonferr. Metal. Soc. 2008, 18, 831–835. [Google Scholar]
- Kruth, J.; Froyen, L.; Van Vaerenbergh, J.; Mercelis, P.; Rombouts, M.; Lauwers, B. Selective laser melting of iron-based powder. J. Mater. Process. Technol. 2004, 149, 616–622. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, J.; Bai, P.; Qu, H.; Liang, M.; Liao, H.; Wu, L.; Huo, P.; Liu, H.; Zhang, J. Microstructure and Mechanical Properties of TiC-Reinforced 316L Stainless Steel Composites Fabricated Using Selective Laser Melting. Metal 2019, 9, 267. [Google Scholar] [CrossRef]
- Zhao, Z.; Bai, P.; Du, W.; Liu, B.; Pan, D.; Das, R.; Liu, C.; Guo, Z. An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications. Carbon 2020, 170, 302–326. [Google Scholar] [CrossRef]
- Dong, N.; Zhang, C.; Liu, H.; Fan, G.; Fang, X.; Han, P. Effects of different alloying additives X (X = Si, Al, V, Ti, Mo, W, Nb, Y) on the adhesive behavior of Fe/Cr2O3 interfaces: A first-principles study. Comp. Mater. Sci. 2015, 109, 293–299. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Peng, J.; Sun, L.; Li, B.; Wang, Z.; Zhao, S. A comparable study of Fe//MCs (M = Ti, V) interfaces by first-principles method: The chemical bonding, work of adhesion and electronic structures. J. Phys. Chem. Solids 2020, 138, 109292. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, W.; Bai, P.; Wu, L.; Huo, P. The interfacial structure of Al/Al4C3 in graphene/Al composites prepared by selective laser melting: First-principles and experimental. Mater. Lett. 2019, 255, 126559. [Google Scholar] [CrossRef]
- Zhang, K.; Zhan, Y. Adhesion strength and stability of Cu(111)/TiC(111) interface in composite coatings by first principles study. Vacuum 2019, 165, 215–222. [Google Scholar] [CrossRef]
- Zhuo, Z.; Mao, H.; Xu, H.; Fu, Y. Density functional theory study of Al/NbB2 heterogeneous nucleation interface. Appl. Surf. Sci. 2018, 456, 37–42. [Google Scholar] [CrossRef]
- Segall, M.; Lindan, P.; Probert, M.; Pickard, C.; Hasnip, P.; Clark, S.; Payne, M. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter. 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef] [PubMed]
- Saib, S.; Bouarissa, N. Electronic properties of GaN at high-pressure from local density and generalized gradient approximations. Comp. Mater. Sci. 2006, 37, 613–617. [Google Scholar] [CrossRef]
- Pfrommer, B.; Côté, M.; Louie, S.; Cohen, M. Relaxation of Crystals with the Quasi-Newton Method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef]
- Rui, L.; Yin, X.; Feng, K.; Rui, X. First-principles calculations on Mg/TiB2 interfaces. Comp. Mater. Sci. 2018, 149, 373–378. [Google Scholar]
- Chung, S.; Ha, H.; Jung, W.; Byun, J. An ab Initio Study of the Energetics for Interfaces between Group V Transition Metal Carbides and bcc Iron. ISIJ Int. 2006, 46, 1523–1531. [Google Scholar] [CrossRef]
- Xiong, H.; Zhang, H.; Dong, J. Adhesion strength and stability of TiB2/TiC interface in composite coatings by first principles calculation. Comp. Mater. Sci. 2017, 127, 244–250. [Google Scholar] [CrossRef]
- Siegel, D.; Hector, L.; Adams, J. First-principles study of metal–carbide/nitride adhesion: Al/VC vs. Al/VN. Acta Mater. 2002, 50, 619–631. [Google Scholar] [CrossRef]
- Mao, J.; Li, S.; Zhang, Y.; Chu, X.; Yang, Z. The stability of TiC surfaces in the environment with various carbon chemical potential and surface defects. Appl. Surf. Sci. 2016, 386, 202–209. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, P.; Zhou, Y.; Guo, J.; Ren, X.; Yang, Y.; Yang, Q. First-principles study on ferrite/TiC heterogeneous nucleation interface. J. Alloys Comp. 2013, 556, 160–166. [Google Scholar] [CrossRef]
- Boettger, J. Nonconvergence of surface energies obtained from thin-film calculations. Phys. Rev. B 1994, 49, 16798–16800. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, C. Ni/Ni3Al interface: A density functional theory study. Appl. Surf. Sci. 2009, 255, 3669–3675. [Google Scholar] [CrossRef]
- Rose, J.; Ferrante, J.; Smith, J. Universal Binding Energy Curves for Metals and Bimetallic Interfaces. Phys. Rev. Lett. 1981, 47, 675–678. [Google Scholar] [CrossRef]
- Xiong, H.; Zhang, H.; Zhang, H.; Zhou, Y. Effects of alloying elements X (X = Zr, V, Cr, Mn, Mo, W, Nb, Y) on ferrite/TiC heterogeneous nucleation interface: First-principles study. J. Iron Steel Res. Int. 2017, 24, 328–334. [Google Scholar] [CrossRef]
- Jiang, Q.; Lu, H. Size dependent interface energy and its applications. Surf. Sci. Rep. 2008, 63, 427–464. [Google Scholar] [CrossRef]
- AlMangour, B.; Grzesiak, D.; Yang, J. Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites. J. Alloys Comp. 2017, 728, 424–435. [Google Scholar] [CrossRef]
Phases | Method | A (nm) | V0 (nm3) | B (GPa) | ΔH (eV/atom) |
---|---|---|---|---|---|
γ-Fe | GGAthis work | 0.3445 | 4.0885 | 306 | / |
LDAthis work | 0.3395 | 4.0636 | 301 | ||
GGA [9] | 0.3448 | 4.1010 | 314.7 | / | |
Exp [19] | 0.3450 | 4.1060 | / | / | |
TiC | GGAthis work | 0.4328 | 8.107 | 248 | −0.82 |
LDAthis work | 0.4258 | 7.719 | 264 | −0.88 | |
GGA [20] | 0.4320 | 8.128 | 249 | −0.76 | |
GGA [21] | 0.4343 | 8.192 | / | / |
Surface | Termination | Interlayer | Slab Thickness (N) | |||
---|---|---|---|---|---|---|
3 | 5 | 7 | 9 | |||
γ-Fe (001) | Fe | Δ1–2 | −4.73 | −2.06 | −2.21 | 0.39 |
Δ2–3 | −0.93 | −0.62 | −0.7 | |||
Δ3–4 | 0.23 | 1.63 | ||||
Δ4–5 | 0.58 | |||||
TiC (001) | C centre | Δ1–2 | −4.19 | −4.82 | −5.50 | −5.55 |
Δ2–3 | −0.90 | −0.14 | −0.81 | |||
Δ3–4 | −1.98 | −2.21 | ||||
Δ4–5 | −1.67 | |||||
TiC (001) | Ti centre | Δ1–2 | 0.81 | 1.04 | 1.62 | 1.08 |
Δ2–3 | −1.40 | −2.89 | −3.25 | |||
Δ3–4 | −0.99 | −0.99 | ||||
Δ4–5 | −1.98 |
Layer (N) | Surface Energy (J/m2) | ||
---|---|---|---|
γ-Fe (001) | TiC (001) | ||
C Centre Site | Ti Centre Site | ||
3 | 2.353 | 2.20 | 2.19 |
5 | 3.048 | 1.72 | 1.68 |
7 | 3.046 | 1.71 | 1.68 |
9 | 3.046 | 1.71 | 1.67 |
Termination | Stacking Sequences | After Full Relaxation | ||
---|---|---|---|---|
d0 (nm) | Wad (J/m2) | γint (J/m2) | ||
C centre | on | 0.264 | 3.65 | 0.26 |
bridge | 0.266 | 3.03 | 0.89 | |
Ti centre | on | 0.183 | 3.87 | 0.04 |
bridge | 0.263 | 2.93 | 0.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, P.; Wang, Q.; Zhao, Z.; Du, W.; Liang, M.; Liao, H.; Li, Y.; Zhang, L.; Han, B.; Li, J. Interfacial Stability of TiC/γ-Fe in TiC/316L Stainless Steel Composites Prepared by Selective Laser Melting: First Principles and Experiment. Metals 2020, 10, 1225. https://doi.org/10.3390/met10091225
Bai P, Wang Q, Zhao Z, Du W, Liang M, Liao H, Li Y, Zhang L, Han B, Li J. Interfacial Stability of TiC/γ-Fe in TiC/316L Stainless Steel Composites Prepared by Selective Laser Melting: First Principles and Experiment. Metals. 2020; 10(9):1225. https://doi.org/10.3390/met10091225
Chicago/Turabian StyleBai, Peikang, Qin Wang, Zhanyong Zhao, Wenbo Du, Minjie Liang, Haihong Liao, Yuxin Li, Lizheng Zhang, Bing Han, and Jing Li. 2020. "Interfacial Stability of TiC/γ-Fe in TiC/316L Stainless Steel Composites Prepared by Selective Laser Melting: First Principles and Experiment" Metals 10, no. 9: 1225. https://doi.org/10.3390/met10091225
APA StyleBai, P., Wang, Q., Zhao, Z., Du, W., Liang, M., Liao, H., Li, Y., Zhang, L., Han, B., & Li, J. (2020). Interfacial Stability of TiC/γ-Fe in TiC/316L Stainless Steel Composites Prepared by Selective Laser Melting: First Principles and Experiment. Metals, 10(9), 1225. https://doi.org/10.3390/met10091225