The κ-Carbides in Low-Density Fe-Mn-Al-C Steels: A Review on Their Structure, Precipitation and Deformation Mechanism
Abstract
1. Introduction
2. General Properties
2.1. Structural Properties
2.2. Elastic and Magnetic Properties
3. Precipitation Mechanism
3.1. Equilibrium Thermodynamics
3.2. Formation of κ-Carbide in Austenite Matrix
3.3. Formation of κ-Carbide in Ferrite Matrix
4. Effect of κ-Carbide on Mechanical Properties
4.1. Austenite-Based Fe-Mn-Al-C Steels
4.2. Ferrite-Based Fe-Mn-Al-C Steels
4.3. Duplex-Phase Fe-Mn-Al-C Steels
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chen, S.; Rana, R.; Haldar, A.; Ray, R.K. Current state of Fe-Mn-Al-C low density steels. Prog. Mater. Sci. 2017, 89, 345–391. [Google Scholar] [CrossRef]
- Kimura, Y.; Handa, K.; Hayashi, K.; Mishima, Y. Microstructure control and ductility improvement of the two-phase γ-Fe/κ-(Fe, Mn)3AlC alloys in the Fe–Mn–Al–C quaternary system. Intermetallics 2004, 12, 607–617. [Google Scholar] [CrossRef]
- Frommeyer, G.; Brüx, U. Microstructures and Mechanical Properties of High-Strength Fe-Mn-Al-C Light-Weight TRIPLEX Steels. Steel Res. Int. 2006, 77, 627–633. [Google Scholar] [CrossRef]
- Wu, Z.Q.; Ding, H.; Li, H.Y.; Huang, M.L.; Cao, F.R. Microstructural evolution and strain hardening behavior during plastic deformation of Fe–12Mn–8Al–0.8C steel. Mater. Sci. Eng. A 2013, 584, 150–155. [Google Scholar] [CrossRef]
- Raabe, D.; Springer, H.; Gutierrez-Urrutia, I.; Roters, F.; Bausch, M.; Seol, J.B.; Koyama, M.; Choi, P.P.; Tsuzaki, K. Alloy Design, Combinatorial Synthesis, and Microstructure–Property Relations for Low-Density Fe-Mn-Al-C Austenitic Steels. JOM 2014, 66, 1845–1856. [Google Scholar] [CrossRef]
- Kalashnikov, I.; Shalkevich, A.; Acselrad, O.; Pereira, L.C. Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system. J. Mater. Eng. Perform. 2000, 9, 597–602. [Google Scholar] [CrossRef]
- Howell, R.A.; Aken, D.C. A literature review of age hardening Fe-Mn-Al-C alloys. Iron Steel Technol. 2009, 6, 193–212. [Google Scholar]
- Sutou, Y.; Kamiya, N.; Umino, R.; Ohnuma, I.; Ishida, K. High-strength Fe–20Mn–Al–C-based Alloys with Low Density. ISIJ Int. 2010, 50, 893–899. [Google Scholar] [CrossRef]
- Kim, H.; Suh, D.-W.; Kim, N.J. Fe–Al–Mn–C lightweight structural alloys: A review on the microstructures and mechanical properties. Sci. Technol. Adv. Mater. 2013, 14, 014205. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Raabe, D. High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides. Mater. Sci. Technol. 2014, 30, 1099–1104. [Google Scholar] [CrossRef]
- Ding, H.; Han, D.; Zhang, J.; Cai, Z.; Wu, Z.; Cai, M. Tensile deformation behavior analysis of low density Fe–18Mn–10Al–xC steels. Mater. Sci. Eng. A 2016, 652, 69–76. [Google Scholar] [CrossRef]
- Frommeyer, G.; Drewes, E.J.; Engl, B. Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Rev. De Metall. Cah. D Inf. Tech. 2000, 97, 1245–1253. [Google Scholar] [CrossRef]
- Chin, K.; Lee, H.; Kwak, J.; Kang, J.; Lee, B. Thermodynamic calculation on the stability of (Fe,Mn)3AlC carbide in high aluminum steels. J. Alloy. Compd. 2010, 505, 217–223. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Frommeyer, G. The ternary iron aluminum carbides. J. Alloy. Compd. 2011, 509, 2729–2733. [Google Scholar] [CrossRef]
- Lu, W.J.; Zhang, X.F.; Qin, R.S. Structure and properties of κ-carbides in duplex lightweight steels. Ironmak. Steelmak. 2015, 42, 626–631. [Google Scholar] [CrossRef]
- Grässel, O.; Frommeyer, G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels. Mater. Sci. Technol. 1998, 14, 1213–1217. [Google Scholar] [CrossRef]
- Frommeyer, G.; Jiménez, J.A. Structural superplasticity at higher strain rates of hypereutectoid Fe-5.5Al-1Sn-1Cr-1.3C steel. Metall. Mater. Trans. A 2005, 36, 295–300. [Google Scholar] [CrossRef]
- Kim, K.-H.; Lee, J.-S.; Lee, D.-L. Effect of silicon on the spheroidization of cementite in hypereutectoid high carbon chromium bearing steels. Met. Mater. Int. 2010, 16, 871–876. [Google Scholar] [CrossRef]
- Liu, D.; Cai, M.; Ding, H.; Han, D. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel. Mater. Sci. Eng. A 2018, 715, 25–32. [Google Scholar] [CrossRef]
- Chen, P.; Xiong, X.C.; Wang, G.D.; Yi, H.L. The origin of the brittleness of high aluminum pearlite and the method for improving ductility. Scr. Mater. 2016, 124, 42–46. [Google Scholar] [CrossRef]
- Connetable, D.; Maugis, P. First principle calculations of the κ-Fe3AlC perovskite and iron–aluminium intermetallics. Intermetallics 2008, 16, 345–352. [Google Scholar] [CrossRef]
- Noh, J.Y.; Kim, H. Ab initiocalculations on the effect of Mn substitution in theκ-carbide Fe3AlC. J. Korean Phys. Soc. 2013, 62, 481–485. [Google Scholar] [CrossRef]
- Palm, M.; Inden, G. Experimental determination of phase equilibria in the Fe-Al-C system. Intermetallics 1995, 3, 443–454. [Google Scholar] [CrossRef]
- Andryushchenko, V.A.; Gavrilyuk, V.G.; Nadutov, V.M. Atomic and magnetic ordering in the κ-phase of Fe-Al-C alloys. Phys. Met. Metallogr. 1985, 60, 50–55. [Google Scholar]
- Yang, J.; La, P.; Liu, W.; Hao, Y. Microstructure and properties of Fe3Al–Fe3AlC0.5 composites prepared by self-propagating high temperature synthesis casting. Mater. Sci. Eng. A 2004, 382, 8–14. [Google Scholar] [CrossRef]
- Huetter, L.J.; Stadelmaier, H.H. Ternary carbides of transition metals with aluminum and magnesium. Acta Metall. 1958, 6, 367–370. [Google Scholar] [CrossRef]
- Choo, W.K.; Han, K.H. Phase constitution and lattice parameter relationships in rapidly solidified (Fe0.65Mn0.35)0.83 Al0.17-xC and Fe3Al-xC pseudo-binary alloys. Metall. Mater. Trans. A 1985, 16, 5–10. [Google Scholar] [CrossRef]
- Hosoda, H.; Miyazaki, S.; Mishima, Y. Phase constitution of some intermetallics in continuous quaternary pillar phase diagrams. J. Phase Equilibria 2001, 22, 394–399. [Google Scholar] [CrossRef]
- Dierkes, H.; Leusen, J.V.; Bogdanovski, D.; Dronskowski, R. Synthesis, Crystal Structure, Magnetic Properties, and Stability of the Manganese-Rich “Mn3AlC” κ Phase. Inorg. Chem. 2017, 56, 1045–1048. [Google Scholar] [CrossRef]
- Kellou, A.; Grosdidier, T.; Raulot, J.M.; Aourag, H. Atomistic study of magnetism effect on structural stability in Fe3Al and Fe3AlX (X = H, B, C, N, O) alloys. Phys. Status Solidi 2008, 245, 750–755. [Google Scholar] [CrossRef]
- Briggs, I.; Russell, G.J.; Clegg, A.G. Some structural and magnetic properties of Fe-Al-C and Fe-Mn-Al-C alloys. J. Mater. Sci. 1985, 20, 668–673. [Google Scholar] [CrossRef]
- Jiyoung, N.; Hanchul, K. Density Functional Theory Calculations on kappa-carbides, (Fe,Mn)3AlC. J. Korean Phys. Soc. 2011, 58, 285–290. [Google Scholar]
- Meyer, L.; Bühler, H.E. Aufbau von Diffusionsschichten zwischen unlegiertem Stahl und Aluminium (Construction of diffusion-layers of unalloyed steel and aluminium). Aluminium 1967, 43, 733–738. [Google Scholar]
- Parker, S.F.H.; Grundy, P.J.; Jones, G.A.; Briggs, I.; Clegg, A.G. Microstructure and magnetic properties of the permanent magnet material FeAIC. J. Mater. Sci. 1988, 23, 217–222. [Google Scholar] [CrossRef]
- Reddy, B.V.; Khanna, S.N. Chemically induced oscillatory exchange coupling in chromium oxide clusters. Phys. Rev. Lett. 1999, 83, 3170–3173. [Google Scholar] [CrossRef]
- Reddy, B.V.; Deevi, S.C. Local interactions of carbon in FeAl alloys. Mater. Sci. Eng. A 2002, 329, 395–401. [Google Scholar] [CrossRef]
- Cheng, W. Formation of a New Phase after High-Temperature Annealing and Air Cooling of an Fe-Mn-Al Alloy. Metall. Mater. Trans. A 2005, 36, 1737–1743. [Google Scholar] [CrossRef]
- Cheng, W.; Song, Y.; Lin, Y.; Chen, K.; Pistorius, P.C. On the Eutectoid Reaction in a Quaternary Fe-C-Mn-Al Alloy: Austenite → Ferrite + Kappa-Carbide + M23C6 Carbide. Metall. Mater. Trans. A 2014, 45, 1199–1216. [Google Scholar] [CrossRef]
- Kim, M.-S.; Kang, Y.-B. Development of thermodynamic database for high Mn–high Al steels: Phase equilibria in the Fe–Mn–Al–C system by experiment and thermodynamic modeling. Calphad 2015, 51, 89–103. [Google Scholar] [CrossRef]
- Connetable, D.; Lacaze, J.; Maugis, P.; Sundman, B. A Calphad assessment of Al–C–Fe system with the κ carbide modelled as an ordered form of the fcc phase. Calphad 2008, 32, 361–370. [Google Scholar] [CrossRef]
- Ishida, K.; Ohtani, H.; Satoh, N.; Kainuma, R.; Nishizawa, T. Phase Equilibria in Fe-Mn-Al-C Alloys. ISIJ Int. 1990, 30, 680–686. [Google Scholar] [CrossRef]
- Kim, M.-S.; Kang, Y.-B. Thermodynamic Modeling of the Fe-Mn-C and the Fe-Mn-Al Systems Using the Modified Quasichemical Model for Liquid Phase. J. Phase Equilibria Diffus. 2015, 36, 453–470. [Google Scholar] [CrossRef]
- Kumar, K.C.H.; Raghavan, V. A Thermodynamic Analysis of the Al-C-Fe System. J. Phase Equilibria 1991, 12, 275–286. [Google Scholar] [CrossRef]
- Raghavan, V. Al-C-Fe (aluminum-carbon-iron). Cheminform 1993, 34, 615–617. [Google Scholar]
- Raghavan, V. Al-C-Fe (Aluminum-Carbon-Iron). J. Phase Equilibria 2002, 23, 508–510. [Google Scholar] [CrossRef]
- Raghavan, V. Al-C-Fe (Aluminiun-Carbon-Iron). J. Phase Equilibria Diffus. 2007, 28, 267–268. [Google Scholar] [CrossRef]
- Phan, A.T.; Paek, M.K.; Kang, Y.B. Phase equilibria and thermodynamics of the Fe–Al–C system: Critical evaluation, experiment and thermodynamic optimization. Acta Materialia 2014, 79, 1–15. [Google Scholar] [CrossRef]
- Moon, J.; Park, S.; Jang, J.H.; Lee, T.; Lee, C.; Hong, H.; Suh, D.; Kim, S.; Han, H.N.; Lee, B.H. Atomistic investigations of κ-carbide precipitation in austenitic Fe-Mn-Al-C lightweight steels and the effect of Mo addition. Scr. Mater. 2017, 127, 97–101. [Google Scholar] [CrossRef]
- Bentley, A.P. Ordering in Fe-Mn-Al-C austenite. J. Mater. Sci. Lett. 1986, 5, 907–908. [Google Scholar] [CrossRef]
- Chu, S.M.; Kao, P.W.; Gan, D. Growth kinetics of κ-carbide particles in Fe-30Mn-10Al-1C-1Si alloy. Scr. Metall. Et Mater. 1992, 26, 1067–1070. [Google Scholar] [CrossRef]
- Yang, L.; Huang, F.; Guo, Z.; Rong, Y.; Chen, N. Investigation on the formation mechanism of ordered carbide (FeMn)3AlC in the Al added twinning-induced plasticity steels. J. Shanghai Jiaotong Univ. 2016, 21, 406–410. [Google Scholar] [CrossRef]
- Lu, K.; Lu, L.; Suresh, S. Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale. Science 2009, 324, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, L.N.; Van Aken, D.C.; Medvedeva, J.; Isheim, D.; Medvedeva, N.; Song, K. An Atom Probe Study of κ-carbide Precipitation in Austenitic Lightweight Steel and the Effect of Phosphorus. Metall. Mater. Trans. A 2017, 48, 5500–5515. [Google Scholar] [CrossRef]
- Chang, K.M.; Chao, C.G.; Liu, T.F. Excellent combination of strength and ductility in an Fe–9Al–28Mn–1.8C alloy. Scr. Mater. 2010, 63, 162–165. [Google Scholar] [CrossRef]
- Choi, K.; Seo, C.-H.; Lee, H.; Kim, S.K.; Kwak, J.H.; Chin, K.G.; Park, K.-T.; Kim, N.J. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn–9Al–0.8C steel. Scr. Mater. 2010, 63, 1028–1031. [Google Scholar] [CrossRef]
- Chao, C.Y.; Hwang, C.N.; Liu, T.F. Grain boundary precipitation in an Fe-7.8Al-31.7Mn-0.54C alloy. Scr. Metall. Et Mater. 1993, 28, 109–114. [Google Scholar] [CrossRef]
- Hwang, C.N.; Chao, C.Y.; Liu, T.F. Grain boundary precipitation in an Fe-8.0Al-31.5Mn-1.05C alloy. Scr. Metall. Et Mater. 1993, 28, 263–268. [Google Scholar] [CrossRef]
- Bartlett, L.N. On the Effect of Silicon and Phosphorus During the Precipitation of Kappa-Carbide in Fe-Mn-Al-C Alloys. Ph.D. Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2013. [Google Scholar]
- Seol, J.-B.; Raabe, D.; Choi, P.; Park, H.-S.; Kwak, J.H.; Park, C.-G. Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe–Mn–Al–C alloy studied by transmission electron microscopy and atom probe tomography. Scr. Mater. 2013, 68, 348–353. [Google Scholar] [CrossRef]
- Heo, Y.-U.; Song, Y.-Y.; Park, S.-J.; Bhadeshia, H.K.D.H.; Suh, D.-W. Influence of Silicon in Low Density Fe-C-Mn-Al Steel. Metall. Mater. Trans. A 2012, 43, 1731–1735. [Google Scholar] [CrossRef]
- Sato, K.; Tagawa, K.; Inoue, Y. Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys. Metall. Trans. A 1990, 21, 5–11. [Google Scholar] [CrossRef]
- Jeong, J.; Lee, C.-Y.; Park, I.-J.; Lee, Y.-K. Isothermal precipitation behavior of κ-carbide in the Fe–9Mn–6Al–0.15C lightweight steel with a multiphase microstructure. J. Alloy. Compd. 2013, 574, 299–304. [Google Scholar] [CrossRef]
- Sato, K.; Ichinose, M.; Hirotsu, Y.; Inoue, Y. Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe-Mn-Al alloys. ISIJ Int. 1989, 29, 868–877. [Google Scholar] [CrossRef]
- Haase, C.; Zehnder, C.; Ingendahl, T.; Bikar, A.; Tang, F.; Hallstedt, B.; Hu, W.; Bleck, W.; Molodov, D.A. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel. Acta Mater. 2017, 122, 332–343. [Google Scholar] [CrossRef]
- Kim, C.W.; Terner, M.; Lee, J.H.; Hong, H.U.; Moon, J.; Park, S.J.; Jang, J.H.; Lee, C.H.; Lee, B.H.; Lee, Y.J. Partitioning of C into κ-carbides by Si addition and its effect on the initial deformation mechanism of Fe-Mn-Al-C lightweight steels. J. Alloy. Compd. 2019, 775, 554–564. [Google Scholar] [CrossRef]
- Ding, H.; Li, H.; Misra, R.D.K.; Wu, Z.; Cai, M. Strengthening Mechanisms in Low Density Fe–26Mn–xAl–1C Steels. Steel Res. Int. 2018, 89, 1700381. [Google Scholar] [CrossRef]
- Bartlett, L.; Van Aken, D. High Manganese and Aluminum Steels for the Military and Transportation Industry. JOM 2014, 66, 1770–1784. [Google Scholar] [CrossRef]
- Ishii, H.; Ohkubo, K.; Miura, S.; Mohri, T. Mechanical Properties of α+κ Two-phase Lamellar Structure in Fe-Mn-Al-C Alloy. Mater. Trans. 2003, 44, 1679–1681. [Google Scholar] [CrossRef]
- Yi, H.L.; Hou, Z.Y.; Xu, Y.B.; Wu, D.; Wang, G.D. Acceleration of spheroidization in eutectoid steels by the addition of aluminum. Scr. Mater. 2012, 67, 645–648. [Google Scholar] [CrossRef]
- Embury, J.D.; Fisher, R.M. The structure and properties of drawn pearlite. Acta Metall. 1966, 14, 147–159. [Google Scholar] [CrossRef]
- Yi, H.L.; Chen, P.; Hou, Z.Y.; Hong, N.; Cai, H.L.; Xu, Y.B.; Wu, D.; Wang, G.D. A novel design: Partitioning achieved by quenching and tempering (Q–T & P) in an aluminium-added low-density steel. Scr. Mater. 2013, 68, 370–374. [Google Scholar]
- Chen, P.; Wang, G.D.; Xiong, X.C.; Yi, H.L. Abnormal expansion due to pearlite-to-austenite transformation in high aluminium-added steels. Mater. Sci. Technol. 2016, 32, 1678–1682. [Google Scholar] [CrossRef]
- Shin, S.Y.; Lee, H.; Han, S.Y.; Seo, C.-H.; Choi, K.; Lee, S.; Kim, N.J.; Kwak, J.-H.; Chin, K.-G. Correlation of Microstructure and Cracking Phenomenon Occurring during Hot Rolling of Lightweight Steel Plates. Metall. Mater. Trans. A 2009, 41, 138–148. [Google Scholar] [CrossRef]
- Han, S.Y.; Shin, S.Y.; Lee, S.; Kim, N.J.; Kwak, J.-H.; Chin, K.-G. Effect of Carbon Content on Cracking Phenomenon Occurring during Cold Rolling of Three Light-Weight Steel Plates. Metall. Mater. Trans. A 2010, 42, 138–146. [Google Scholar] [CrossRef]
- Han, S.Y.; Shin, S.Y.; Lee, H.-J.; Lee, B.-J.; Lee, S.; Kim, N.J.; Kwak, J.-H. Effects of Annealing Temperature on Microstructure and Tensile Properties in Ferritic Lightweight Steels. Metall. Mater. Trans. A 2011, 43, 843–853. [Google Scholar] [CrossRef]
- Song, H.; Kwon, Y.; Sohn, S.S.; Koo, M.; Kim, N.J.; Lee, B.-J.; Lee, S. Improvement of tensile properties in (austenite+ferrite+κ-carbide) triplex hot-rolled lightweight steels. Mater. Sci. Eng. A 2018, 730, 177–186. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Li, X.; Yi, H. The κ-Carbides in Low-Density Fe-Mn-Al-C Steels: A Review on Their Structure, Precipitation and Deformation Mechanism. Metals 2020, 10, 1021. https://doi.org/10.3390/met10081021
Chen P, Li X, Yi H. The κ-Carbides in Low-Density Fe-Mn-Al-C Steels: A Review on Their Structure, Precipitation and Deformation Mechanism. Metals. 2020; 10(8):1021. https://doi.org/10.3390/met10081021
Chicago/Turabian StyleChen, Peng, Xiaowu Li, and Hongliang Yi. 2020. "The κ-Carbides in Low-Density Fe-Mn-Al-C Steels: A Review on Their Structure, Precipitation and Deformation Mechanism" Metals 10, no. 8: 1021. https://doi.org/10.3390/met10081021
APA StyleChen, P., Li, X., & Yi, H. (2020). The κ-Carbides in Low-Density Fe-Mn-Al-C Steels: A Review on Their Structure, Precipitation and Deformation Mechanism. Metals, 10(8), 1021. https://doi.org/10.3390/met10081021