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Abstract: Fe-Mn-Al-C steels exhibit an outstanding combination of strength and ductility, and
the addition of aluminum drastically reduces the density of steels. The low density also offers the
advantage of lightweight structures compared with other alloys in practical applications. The addition
of aluminum leads to an increased probability of κ-carbide precipitation, which would significantly
affect the mechanical properties. This paper aims to review the κ-carbide in Fe-Mn-Al-C steels,
including the structure, elastic and magnetic properties of κ-carbide, the precipitation mechanism
of κ-carbide involving thermodynamic equilibrium, and the operative deformation mechanism
of κ-carbide that governs the mechanical properties. It is hoped that such a comprehensive
summarization of the knowledge of κ-carbide will be beneficial for the further development of
low-density Fe-Mn-Al-C steels.
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1. Introduction

Fe-Mn-Al-C steels were developed as a substitute for Fe-Cr-Ni stainless steels in the 1950s [1].
Recently, high-performance Fe-Mn-Al-C low-density steels have become attractive for potential
applications in the production of structural parts, especially in the automotive industry, as they are able
to simultaneously satisfy the requirements of reducing energy consumption while improving safety
standards [2–5]. Fe-Al-Mn-C steels possess outstanding mechanical properties, with a yield strength
of 0.4–1.0 GPa, an ultimate tensile strength of 0.6–2.0 GPa, and an elongation of 30–100% [3,5–9].
With respect to the range of chemical compositions, they can be an austenite matrix, a ferrite matrix,
or duplex (ferrite and austenite) [10,11]. Manganese and carbon act as austenite stabilizers, while
aluminum is a ferrite stabilizer. In addition, a specific weight reduction can be achieved in these steels
through the addition of aluminum, since the aluminum element has a low atomic mass and causes a
lattice expansion [12]. There will be a 1.3% density reduction per 1 wt.% addition of aluminum [3].

The addition of aluminum also accelerates the precipitation of ordered perovskite structure carbide,
i.e., κ-carbide [9,13–15]. In the initial stages of the study of κ-carbide, it was thought to be harmful
to ductility, and boron, titanium and niobium were normally added to suppress the precipitation of
κ-carbide [16–18]. It has more recently been recognized that κ-carbide can simultaneously enhance
strength and ductility by optimizing its fraction, morphology, size and distribution [19,20]. The
intergranular κ-carbide is usually undesirable, while the intragranular nano-sized κ-carbide is popular
for the improvement of mechanical properties [19].
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In this review paper, the structure and precipitation mechanism of κ-carbide, as well as its influence
on the mechanical properties of low-density Fe-Mn-Al-C steels, are summarized. Studies on κ-carbide
in Fe-Mn-Al-C steels are reported in some cases. However, a deeper understanding of the intrinsic
properties and equilibrium thermodynamics are required in order to make better use of κ-carbide. The
deformation mechanism of Fe-Mn-Al-C steels related to κ-carbide is complicated. An appropriate
assessment of the effective mechanism of κ-carbide on the microstructure evolution and mechanical
behavior is needed for the further development of Fe-Mn-Al-C steels.

2. General Properties

2.1. Structural Properties

In the Fe-Al-C system, the κ-carbide is a ternary carbide with an E21 structure (Strukturbericht
Designation), otherwise known as a perovskite structure [13–15,21]. This structure is based on the
face-centered cubic (fcc) ordered Fe3Al-L12 structure, with iron atoms located at the center of each
face, aluminum atoms sitting on the corners of the cube and carbon atom occupying the central
octahedral interstitial position formed by the six iron atoms as the first nearest neighbors (space group
Pm3m) (Figure 1) [14,22]. The perfect arrangement of this type corresponds to the formula of Fe3AlC,
while this stequiometry has not been experimentally observed [21,23]. As experimentally reported
by Andryushchenko et al. [24], the stequiometry of κ-carbide was proposed to be Fe4-yAlyCx with
0.8 < y < 1.2 and 0 < x < 1. Some other studies have indicated that the stequiometry of κ-carbide is
probably close to Fe3AlCx=0.5 [23,25], and that the formula is described as being Fe3AlCx, where x
varies from 0.5 to 1 [26,27]. The lattice parameter of κ-carbide in the Fe-Al-C system changes with the
composition, and it has been calculated and measured in many investigations (Table 1). It has been
reported that the dependence of the lattice parameters on carbon concentration can be described in the
following form: aκ-carbide = 3.7605 + 0.0295 at.%C [14]. With the introduction of manganese into the
Fe-Al-Mn-C system, the manganese atom occupies the same position as iron in the κ-carbide lattice,
and it has a continues spectrum when varying the manganese content from Fe3AlC to Mn3AlC, which
is expressed as (Fe,Mn)3AlC [2,28]. The lattice parameter a0 increases as the manganese content rises,
due to manganese having a larger atom radius (132 pm) than that of iron (127 pm).
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Figure 1. Conventional cell of κ-Fe3AlC carbide. Please note that white balls represent carbon
atoms, grey balls represent aluminum atoms, and orange balls represent iron atoms. (Reprinted with
permission from [21], copyright Elsevier, 2008).
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Table 1. The lattice parameters of κ-carbide given by relevant references.

κ-Carbide a0 (Å) Reference

Fe3AlC

3.75 (sp) [21]
3.73 (np)

3.78 [23]

3.72–3.78 [26,27]

3.783–3.79 [14]

3.76 [22]

Fe2MnAlC 3.78 [22]

FeMn2AlC 3.80 [22]

Mn3AlC
3.81 [22]

3.875 [29]

sp—spin polarized, and np—without spin effects.

2.2. Elastic and Magnetic Properties

It is well known that κ-Fe3AlC carbide is formed by the insertion of a carbon atom at the octahedral
site surrounded by six iron atoms of Fe3Al-Ll2. The insertion of carbon significantly influences the elastic
constants [21], and softens the magnetic properties [30]. The elastic constants and bulk modulus (B0)
calculated by previous investigators are listed in Table 2. For the cubic system of Fe3AlC and Mn3AlC,
there are only three independent elastic constants—C11, C12 and C44—while the tetragonal structure
of Fe2MnAlC and FeMn2AlC have an additional three independent elastic constants—C13, C33, and
C66. A comparison of Fe3Al-Ll2 and Fe3AlC indicates that Fe3AlC is stiffer and more anisotropic, and
carbon rigidifies the crystal. The elastic constants and bulk modulus of Mn3AlC are higher than those
of Fe3AlC, due to the Mn-C bond being stronger than the Fe-C bond. The fact that C33 for Fe2MnAlC
and C11 for FeMn2AlC are higher than C11 for Fe2MnAlC and C33 for FeMn2AlC is also a result of the
stronger Mn-C bond. Briggs et al. [31] also reported that manganese has a greater affinity with carbon.
As a consequence, the introduction of carbon and manganese makes the crystal harder [32].

Table 2. The elastic constants and bulk modulus of Fe3Al-Ll2 and κ-carbides (in GPa).

Material C11 C12 C44 C13 C33 C66 B0 Reference

Fe3Al-Ll2
185 160 124 - - - 168 [32]

184 145 160 - - - 158 [21]

Fe3AlC
426 91 65 - - - 203 [32]

453 100 69 - - - 215 [21]

Fe2MnAlC 422 74 92 92 463 92 202
[32]FeMn2AlC 465 86 96 138 455 100 234

Mn3AlC 454 100 106 - - - 218

It has been stated that κ-carbide is ferromagnetic, with a Curie temperature between 125 ◦C and
290 ◦C [21,33], while some investigations have shown that κ-carbide might not be magnetic [24,34]. This
is due to the strong interactions of Fe-C and Fe-Al, which may result in the quenching of the magnetic
moment, therefore resulting in κ-carbide being non-magnetic [35]. The insertion of carbon significantly
decreases the magnetic properties, with reduction of more than 50% [30]. A study by Reddy and
Deevi [36] found that the local interactions of carbon in Fe3AlC govern the magnetic properties
that contribute to the atomic arrangement. In contrast to carbon, manganese substitution enhances
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the magnetic properties of κ-carbide, except for Fe2MnAlC [32]. The enhancement of magnetism is
caused by the fact that the local magnetic moment of manganese is larger than that of iron, and the
abnormal response of Fe2MnAlC is a result of the reduction of the Fe moment overcompensating for
the enhancement of the local moment upon Mn substitution [32].

3. Precipitation Mechanism

3.1. Equilibrium Thermodynamics

The Fe-Mn-Al-C steels have received a great deal of attention, which has been driven by the
requirements of industry. Fe-Mn-Al-C steels exhibit a high density reduction, a high corrosion
resistance, and a high strength–ductility match [3,5–9]. κ-carbide precipitation has an important effect
on the mechanical and other properties of Fe-Mn-Al-C steels. For the detailed control of properties, it is
essential to understand the microstructural constitution and evolution. Therefore, many investigations
have recently calculated and measured equilibrium diagrams of Fe-Mn-Al-C steels involving the
κ-carbide [9,13,23,37–42]. The Fe-C-Al system was first established covering a wide temperature range
by Kumar and Raghavan [43], and some updates have subsequently been achieved [44–46], which is
quite helpful for us to understand the formation of κ-carbide. The isothermal sections of the Fe-C-Al
ternary system were calculated, and the Gibbs energies of κ-carbide formation were obtained [43].
Palm et al. [23] measured the phase equilibrium using an experimental method, and the properties of
κ-carbide were also determined. Based on the thermodynamic description of the Fe-Al-C system and
an existing database of Fe-based alloys, Chin et al. constructed the Fe-Mn-Al-C quaternary system
(Figure 2), which exhibited a better fit with the experimental results when evaluating the stability of
κ-carbide [13]. Considering the properties of liquids and optimizing the model parameters of κ-carbide,
Kim et al. [39,42] and Phan et al. [47] developed a more accurate thermodynamic database, which
could be used in the design of Fe-Mn-Al-C steels by predicting their phase evolution during heat
treatment and κ-carbide precipitation.
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Figure 2. Calculated phase relations of Fe-20Mn-Al-C alloys at 900 ◦C (a) and 1200 ◦C (b), in comparison
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3.2. Formation of κ-Carbide in Austenite Matrix

The observation of κ-carbide in austenite (Figure 3) indicates a typical microstructure by spinodal
decomposition, which is mainly determined by the composition fluctuation of aluminum and carbon,
and there is no nucleation stage [15,48]. Actually, the spinodal decomposition mechanism of κ-carbide
in austenite was found in 1986 by Bentley et al. [49], and Chu et al. [50] obtained similar results
in 1992. Additionally, the formation mechanism of κ-carbide in austenite was also analyzed from
a thermodynamic perspective by Yang et al. [51]. The orientation relationships between κ-carbide
and austenite matrix are (011)κ//(001)γ and [001]κ//[001]γ (Figure 3c), and the lattice misfit along
[001]κ//[001]γ was calculated to be 2.70% [15]. The low lattice misfit signifies a small elastic strain
energy, which induces the spinodal decomposition at low undercooling, and it was also able to
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produce excellent mechanical properties [52,53]. Aging at 600 ◦C for less than 100 h, a cuboidal
nano-sized κ-carbide has been observed in previous studies to precipitate in austenitic Fe-Mn-Al-C
steels [54–57]. Bartlett et al. [53] investigated the effect of silicon on κ-carbide precipitation in austenite,
and found that silicon accelerates the formation of κ-carbide, but does not increase its fraction. Their
results also suggested that phosphorus increases the initial ordering reaction, and accelerates the
spinodal decomposition for κ-carbide precipitation in the latter stage [58]. Moon et al. [48] found
that molybdenum delays the precipitation of κ-carbide, owing to an increased strain energy between
κ-carbide and austenite by molybdenum addition. The results of Sutou et al. [8] showed that chromium
does not partition into κ-carbide and delays the precipitation of κ-carbide.
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Figure 3. (a) SEM image of κ-carbide in austenite, (b) TEM bright field image of fine κ-carbide in
austenite, and (c) TEM diffraction pattern from selected γ/κ area. (Reprinted with permission from [15],
copyright Taylor and Francis, 2015).

3.3. Formation of κ-Carbide in Ferrite Matrix

The microstructures of κ-carbide formed in the ferrite-based low-density Fe-Mn-Al-C alloy
are illustrated in Figure 4, and are formed by a typical eutectoid reaction of γ→α+κ associated
with nucleation and growth [15,59]. The orientation relationships between κ-carbide and ferrite are
(111)κ//(110)α and [011]κ//[001]α (Figure 4a), corresponding to the well-known Nishiyama–Wasserman
(N-W) relationship. The interface between κ-carbide and ferrite is semi-coherent, and verified by misfit
dislocations (‘D’) (Figure 4b), and the lattice misfit is high, and was measured to be nearly 5.9% by
Seol et al. [59], while it was calculated to be 6.67% along [011]κ//[001]α by Lu et al. [15], resulting in
an elongated rod-type morphology of κ-carbide. Additionally, carbon and aluminum promote and
stabilize the precipitation of κ-carbide [60,61]. The low solubility of carbon in ferrite also facilitates the
stabilization of κ-carbide [15]. The nucleation/growth of κ-carbide is determined by the diffusion of
carbon and aluminum. Jeong et al. [62] observed that austenite decomposed into ferrite and κ-carbide
by means of a eutectoid reaction after aging at 550 ◦C for 5 h, and the κ-carbide was precipitated
quickly at the boundaries after aging at 550 ◦C for 1 h, due to the pre-segregation of solute atoms at
both the grain and interphase boundaries.
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Figure 4. (a) TEM micrograph and the corresponding SADP of [011]α zone for the steel isothermally
annealed at 600 ◦C and (b) Cs-corrected (S) TEM bright-field image. D, dislocations. (Reprinted with
permission from [59], copyright Elsevier, 2013).

4. Effect of κ-Carbide on Mechanical Properties

4.1. Austenite-Based Fe-Mn-Al-C Steels

Austenite-based Fe-Mn-Al-C steels, with compositions of 15–30 wt.% Mn, 5–7 wt.% Al and
0.5–1.2 wt.% C, offer a combination of outstanding mechanical properties, which have been widely
investigated [3–5,10,63–65]. The addition of Al promotes the precipitation of κ-carbide and thus
significantly affects the mechanical strength [2]. The precipitation of coarse κ-carbide or/and thick
κ-carbide film on the austenite grain boundaries was found to be one of the reasons for the deterioration
of ductility, as a result of the increased ease of stress concentration at boundaries [2,62]. Nano-sized
κ-carbide precipitation is responsible for the high strength, hardness and good ductility of austenitic
steels. Ding et al. [66] reported that the precipitation strengthening effect of nano-sized κ-carbide on
the yield strength was about 1.78 times the size of the effect of strengthening from the Al solution
(Figure 5). Sutou et al. [8] investigated austenitic steels with excellent ductility and high hardness
and strength, which is also related to the precipitation of nano-sized κ-carbide. In their results,
Fe-20Mn-11Al-1.8C-5Cr showed a hardness of 427 HV, a tensile strength of 1223 MPa, an elongation
of 41%, and especially a higher specific strength than that of conventional steels [8]. Considering
the influence of intergranular κ-carbide on fracture behavior and the beneficial effect of nano-sized
intragranular κ-carbide on mechanical properties, the control of κ-carbide precipitation was achieved by
varying the cooling pattern or alloy addition [8,19,48,58]. With the cooling path of Fe-11Mn-9Al-1.25C
steels changing from air cooling to intensive quenching, intergranular κ-carbides with a size of 0.6–2.6
µm were inhibited, and intra-granular κ-carbides with sizes smaller than 13 nm were observed [19].
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Figure 5. Diagram indicating the different mechanisms contributing to the yield strength of
Fe-26Mn-xAl-1C steels. (Reprinted with permission from [66], copyright Wiley, 2017).

Investigations on the interaction mechanism of dislocation/κ-carbide are crucial for understanding
how κ-carbide precipitation affects mechanical behavior. Frommeyer and Brüx [3] reported that a
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regular distribution of nano-sized κ-carbide coherent with austenite sustained a shear band-induced
plasticity (SIP) effect, namely, the formation of uniformly arranged shear bands on {111} planes
accompanied by dislocation gliding, which formed the main contribution to ductility (Figure 6). Their
results were different from those reported in some earlier studies, in which martensite transformation
and/or twinning was regarded as the dominant deformation mechanism [63]. The SIP mechanism
was also discussed by Choi et al. [55], Wu et al. [4] and Hasse et al. [64], who only focused on the
shearing of κ-carbide. In contrast, Rabbe et al. [5] and Gutierre-Urrutia et al. [10] discussed a novel
insight on dislocation/κ-carbide interaction. Their observations demonstrated that the predominant
deformation mechanisms were the Orowan bypassing of rod-shaped κ-carbide, the cross-slip assisting
the subsequent expansion of dislocation loops, and, to a lesser extent, the shearing of κ-carbide
(Figure 7) [10]. The activation of Orowan bypassing and dislocations held at austenite/κ-carbide
interfaces was observed, as shown in Figure 7b. The interaction mechanism related to the volume
fraction and average radius of κ-carbide was then proposed by Kim et al. [65]. Their results indicated
that the dominant deformation mechanism changes from shearing of smaller κ-carbide precipitation to
bypassing of larger precipitation at a certain volume fraction, and the critical radius was evaluated to
be 13.4 nm (Figure 8).Metals 2020, 10, x FOR PEER REVIEW 7 of 14 
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4.2. Ferrite-Based Fe-Mn-Al-C Steels 

Figure 7. (a) TEM image of planar dislocation arrangements, (b) weak beam TEM images of
dislocation/κ-carbides interactions in Fe-30.5Mn-8.0Al-1.2C (wt.%) steel aged at 600 ◦C for 24 h
and tensile deformed to 0.15 true strain: diffraction vectors are indicated by arrows. (Reprinted with
permission from [10], copyright Taylor and Francis, 2014).

Fe-30Mn-9Al-0.9C (wt.%) steel was experimentally examined and found to exhibit a Charpy
V-notch (CVN) impact energy of up to 200 J at room temperature [67]. The notch toughness of
solution-treated Fe-30Mn-9Al-0.9C-1Si (wt.%) steels decreased from 200 J to 28 J when increasing the
phosphorus content from 0.001 wt.% to 0.07 wt.%, due to the promotion of κ-carbide precipitation
along the grain boundaries. The increase in phosphorus content from 0.001 wt.% to 0.043 wt.% also
reduced the dynamic fracture toughness from 376 kJ/m2 to 100 kJ/m2. The silicon content had a similar
effect on the notch toughness and dynamic fracture toughness, resulting from the acceleration of
κ-carbide formation at boundaries.
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4.2. Ferrite-Based Fe-Mn-Al-C Steels 

Figure 8. Relationship between operative deformation mechanism (as the lowest strength increment),
volume fraction and average radius of κ-carbide is shown in (a). Top-view of (a) is present in (b).
For a volume fraction of κ-carbide of 0.18, the curves of strength increment–radius are shown in (c),
which indicates that the critical radius of κ-carbide is 13.4 nm. (Reprinted with permission from [65],
copyright Elsevier, 2019).

4.2. Ferrite-Based Fe-Mn-Al-C Steels

Through a eutectoid reaction of austenite, the κ-carbide is able to present a lamellar
structure with ferrite, known as κ-pearlite, which exhibits a similar structure to that of θ-pearlite
(cementite+ferrite) [20,68]. Under the same mean inter-lamellar spacing, κ-pearlite exhibits a much
higher yield strength and hardness compared with θ-pearlite [68]. For example, Fe-8Mn-13Al-7C (at.%)
steel possesses a yield stress of 1880 MPa and a hardness of 580 HV, while the high-carbon θ-pearlite in
GCr15 bearing steel possesses a hardness of only 367 HV [20,68]. Additionally, the mean inter-lamellar
spacing of κ-pearlite is usually smaller than that of θ-pearlite, since the necessary aluminum diffusion
decreases the kinetics of lamellar thickening [69]. Therefore, κ-pearlite is stronger than θ-pearlite,
according to the Hall-Petch relationship [68,70]. However, κ-pearlite possesses poor ductility, which
can mainly be attributed to the large fraction of carbide in κ-pearlite, resulting from the higher level
of eutectoid carbon content by aluminum addition [71,72]. Therefore, subcritical spheroidization
annealing was first proposed by Chen et al. to improve the ductility of κ-pearlite [20]. More specifically,
after annealing at 700 ◦C for 32 h, the total elongation of Fe-0.55C-1Mn-5Al (wt.%) increased from 13%
to 28%, and the fracture mode changed from brittle to ductile (Figure 9) [20].
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Figure 9. Tensile mechanical properties and SEM images of fracture morphology of the as hot-rolled
and spheroidized steels. (a) Engineering stress–strain curves; (b) tensile fracture of the as hot-rolled
steel showing quasi-cleavage fracture; (c) cold-rolling fracture of the as hot-rolled steel; (d) tensile
fracture of spheroidized alloy exhibiting ductile fracture with some spherical dimples. (Reprinted with
permission from [20], copyright Elsevier, 2016).
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The intergranular κ-carbide is undesirable in ferrite-based alloys as well, as it works to initiate
cracking or facilitate crack propagation. It was suggested by Shin et al. [73] that intergranular κ-carbide
could be suppressed by increasing the finishing-rolling temperature to above 900 ◦C during hot-rolling,
reducing central segregation during the slab-making process, or reducing material variation during
hot-rolling. Han et al. [74] reported that increasing carbon content from 0.1 wt.% to 0.3 wt.% could
effectively reduce the formation of interfacial κ-carbide, thus leading to a simultaneous enhancement
of strength and ductility. Han et al. [75] also found that the appropriate annealing temperature and
carbon content could achieve a fine κ-carbide distribution in ferrite-based steels, thereby bringing
about an improvement in both strength and ductility.

4.3. Duplex-Phase Fe-Mn-Al-C Steels

The mechanical properties of duplex-phase Fe-Mn-Al-C steels are determined by the
microstructures of austenite, ferrite and κ-carbide. As κ-carbide has different precipitation kinetics
in austenite and ferrite, it is necessary to design a thermomechanical process to obtain a suitable
microstructure in light-weight steels with satisfactory mechanical properties [15]. The hardness of
duplex steels annealed at 700 ◦C was measured to be 704 ± 23 HV for austenite containing κ-carbide
and 526 ± 20 HV for ferrite with κ-carbide [15]. Song et al. [76] studied the effect of κ-carbide on the
tensile properties of duplex-phase Fe-Mn-Al-C steels, and they reported that the morphological change
from lamellar to polygonal and the reduction in volume fraction of κ-carbide decreased the strength
but increased the ductility. For instance, the overall tensile properties of duplex-phase steels with
compositions of Fe-0.8C-12Mn-7Al (wt.%) were greatly improved by modifying the morphology and
fraction of κ-carbide after a suitable annealing heat treatment [76]. Annealing at 800 ◦C increased
the elongation of Fe-0.8C-12Mn-7A steels from 2.6% to 34.8% (Figure 10), and increasing manganese
content from 12 wt.% to 15 wt.% or 20 wt.% could effectively decrease the fraction of lamellar κ-carbides
at the grain boundaries, which has a negative effect on the mechanical properties.
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Figure 10. (a) Engineering stress–strain curves and microstructures, (b) true stress–strain curves and
work hardening rate curves of hot-rolled alloy (M12) and annealing alloy (AM12) with the compositions
of Fe-0.8C-12Mn-7Al (wt.%). (Adapted with permission from [76], copyright Elsevier, 2018).

5. Conclusions and Perspectives

κ-carbides are critical precipitates in Fe-Mn-Al-C steels, as they have a significant influence on the
relevant properties. In this paper, the structures, formation mechanism and operative deformation
mechanism of κ-carbide are reviewed, and the major relevant characteristics are summarized in
Figure 11.

The κ-carbide is a carbide with an L’l-type structure that has a perfect formula of (Fe,Mn)3AlC,
while the lattice parameters vary with carbon and manganese content. The addition of manganese
has a great effect on its elastic and magnetic properties. The equilibrium thermodynamic of κ-carbide
precipitation facilitates the design of microstructures. Thus, the accuracy of the thermodynamic
database of the Fe-Mn-Al-C system needs to be substantially improved to include a more accurate
description of κ-carbide precipitation. The κ-carbide is precipitated in the austenite matrix in a typical
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spinodal decomposition, which is mainly determined by fluctuations in the composition of aluminum
and carbon, and there is no nucleation stage, while the κ-carbide is formed by a typical eutectoid
reaction associated with nucleation and growth. A coherent interface is obtained between κ-carbide
and austenite with a low lattice misfit, whereas the κ-carbide/ferrite interface is semi-coherent with a
higher lattice misfit. Although different precipitation mechanisms have been found in austenite and
ferrite matrices, further clarifications on the precipitation mechanisms of κ-carbide are still needed to
obtain a more effective adjustment of microstructures.
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Figure 11. Overall view of the precipitation and deformation of κ-carbide in Fe-Mn-Al-C steels.
(Adapted with permission from [2], copyright Elsevier, 2004; [3] Wiley, 2016; [10] Taylor and Francis,
2004; [15] Taylor and Francis, 2015; [21] Elsevier, 2008; [65] Elsevier, 2019 and [20] Elsevier, 2019).

The operative deformation mechanisms related to κ-carbide in Fe-Mn-Al-C steels were tentatively
revealed. Nano-sized κ-carbide uniformly distributed in austenite is beneficial for the simultaneous
enhancement of strength and ductility. The dominant deformation mechanism on κ-carbide particles in



Metals 2020, 10, 1021 11 of 14

austenite-based Fe-Mn-Al-C steels changes from shearing for large-sized particles to Orwan bypassing
for smaller ones. The lamellar κ-pearlite (κ-carbide + ferrite) formed by a eutectoid reaction may
cause a high brittleness. A spheroidization heat treatment could significantly improve the ductility
of ferrite-based steels by reducing the stress concentration on the carbides. It is now recognized that
κ-carbides on grain boundaries are unfavorable, and an appropriate control of the morphology, size
and distribution of κ-carbide is necessary to obtain the desired mechanical properties. The effect
of κ-carbides on plasticity and fracture mechanisms is still an important subject and needs to be
further investigated.

Other properties, such as fatigue properties, and formability, weldability and coatability of
Fe-Mn-Al-C steels are also of particular significance for their future industrialization. However, the
available information about these properties is still rather limited, and a great deal of experimental
effort is urgently needed in this respect to clarify the probably positive impact of κ-carbides on
these properties.
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