Study on the Possible Error Due to Matrix Interaction in Automated SEM/EDS Analysis of Nonmetallic Inclusions in Steel by Thermodynamics, Kinetics and Electrolytic Extraction
Abstract
1. Introduction
2. Materials and Methods
2.1. Thermodynamic and Kinetic Calculations
2.2. Sample Production, Preparation and Analysis
2.3. Relation Between Particle Classes and EDS Data Acquisition
- A: inclusions > 2 µm with an outstanding dendritic or faceted shape;
- B: inclusions > 2 µm with a spherical shape;
- C: inclusions < 0.5 µm.
- A1: optimum EDS conditions enabling measurements without matrix interaction at low FeO contents with distinctive morphology;
- B1: optimum EDS conditions enabling measurements without matrix interaction at medium to high FeO contents;
- C1: optimum EDS conditions, but massively falsified for all FeO contents due to size-dependent matrix interaction;
- A2, B2, C2: three-dimensional observation of particles without matrix interaction for all FeO contents.
3. Results and Discussion
3.1. Results of Thermodynamic Considerations in the Fe-Mn-O-System
3.2. Influences of Preparation on EDS Data Acquisition A(1-2) and B(1-2)
3.3. Comparison of Theoretical Consideration and SEM/EDS Results
3.4. Evaluation of Produced Particle Population as Standard for EDS Measurements
4. Summary and Conclusions
- A holistic methodology was established producing an inclusion standard for matrix element evaluations in nonmetallic inclusion analysis using the system Fe-Mn-O. This method of sample production, preparation and analysis can be applied for reference measurements to evaluate matrix interaction in SEM/EDS analyses.
- Electrolytic extraction applying a nonaqueous electrolyte (choline chloride and urea), has shown no negative effect neither on low nor on high iron-containing (Fe,Mn) oxides’ morphology and chemistry.
- A comparison between EDS results of cross-sections and filters for the analyzed samples, showed a mean EDS fluctuation of 3.7%FeO, which has to be considered as a quantification limit under the defined measurement conditions.
- First quantification of matrix interaction in submicro steel cleanness EDS evaluations for particle sizes < 0.5 µm resulted in 80%FeO overestimation at 15kV.
- However, for particles with ECD > 2 µm (A and B), the measured FeO content by SEM/EDS is a representative value applicable for further considerations.
Author Contributions
Funding
Conflicts of Interest
References
- Makino, T.; Neishi, Y.; Shiozawa, D.; Kikuchi, S.; Saito, H.; Kajiwara, K.; Nakai, Y. Rolling Contact Fatigue Damage from Artificial Defects and Sulphide Inclusions in High Strength Steel. Procedia Struct. Integr. 2017, 7, 468–475. [Google Scholar] [CrossRef]
- Sandaiji, Y.; Tamura, E.; Tsuchida, T. Influence of Inclusion Type on Internal Fatigue Fracture under Cyclic Shear Stress. Procedia Mater. Sci. 2014, 3, 894–899. [Google Scholar] [CrossRef][Green Version]
- Tervo, H.; Kaijalainen, A.; Pikkarainen, T.; Mehtonen, S.; Porter, D. Effect of impurity level and inclusions on the ductility and toughness of an ultra-high-strength steel. Mater. Sci. Eng. A 2017, 697, 184–193. [Google Scholar] [CrossRef]
- Atkinson, H.V.; Shi, G. Characterization of inclusions in clean steels: A review including the statistics of extremes methods. Prog. Mater. Sci. 2003, 48, 457–520. [Google Scholar] [CrossRef]
- Costa e Silva, A.L.V.D. The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications. J. Mater. Res. Technol. 2019, 8, 2408–2422. [Google Scholar] [CrossRef]
- Garrison, W.M.; Wojcieszynski, A.L. A discussion of the effect of inclusion volume fraction on the toughness of steel. Mater. Sci. Eng. A 2007, 464, 321–329. [Google Scholar] [CrossRef]
- Kaushik, P.; Lehmann, J.; Nadif, M. State of the Art in Control of Inclusions, Their Characterization, and Future Requirements. Metall. Mater. Trans. B 2012, 43, 710–725. [Google Scholar] [CrossRef]
- Murakami, Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, 1st ed.; Elsevier Science Ltd.: Oxford, UK, 2002. [Google Scholar]
- Zhang, L.; Thomas, B.G. State of the Art in Evaluation and Control of Steel Cleanliness. ISIJ Int. 2002, 43, 271–291. [Google Scholar] [CrossRef]
- Bartosiaki, B.G.; Pereira, J.A.M.; Bielefeldt, W.V.; Vilela, A.C.F. Assessment of inclusion analysis via manual and automated SEM and total oxygen content of steel. J. Mater. Res. Technol. 2015, 4, 235–240. [Google Scholar] [CrossRef]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.M.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-Ray Microanalysis; Springer: New York, NY, USA, 2018. [Google Scholar]
- Pistorius, P.C.; Verma, N. Matrix effects in the energy dispersive X-ray analysis of CaO-Al(2)O(3)-MgO inclusions in steel. Microsc. Microanal. 2011, 17, 963–971. [Google Scholar] [CrossRef]
- Tang, D.; Ferreira, M.E.; Pistorius, P.C. Automated Inclusion Microanalysis in Steel by Computer-Based Scanning Electron Microscopy: Accelerating Voltage, Backscattered Electron Image Quality, and Analysis Time. Microsc. Microanal. 2017, 23, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Pistorius, P.C.; Patadia, A.; Lee, J. A Correction of Matrix Effects on Microanalysis of Calcium Aluminate Inclusions. In Proceedings of the AISTech 2013; AISTech: Pittsburgh, PA, USA, 2013. [Google Scholar]
- Pistorius, P.C.; Tang, D.; Ferreira, M.E. Consistency in Automated Inclusion Analysis. In Proceedings of the 9th International Conference on Clean Steel—Cleansteel 9, Budapest, Hungary, 8–9 September 2015. [Google Scholar]
- Doostmohammadi, H.; Karasev, A.; Jönsson, P.G. A Comparison of a Two-Dimensional and a Three-Dimensional Method for Inclusion Determinations in Tool Steel. Steel Res. Int. 2010, 81, 398–406. [Google Scholar]
- Diéguez-Salgado, U.; Michelic, S.; Bernhard, C. Investigation of Metallurgical Phenomena Related to Process and Product Development by Means of High Temperature Confocal Scanning Laser Microscopy; MPPE: Leoben, Austria, 2015. [Google Scholar]
- Sasai, K. Direct Measurement of Agglomeration Force Exerted between Alumina Particles in Molten Steel. ISIJ Int. 2014, 54, 2780–2789. [Google Scholar] [CrossRef]
- Sasai, K.; Misukami, Y. Mechanism of Alumina to continous caster nozzle reoxidation of molten steel. ISIJ Int. 2001, 41, 1331–1339. [Google Scholar] [CrossRef]
- Zheng, L.; Malfliet, A.; Wollants, P.; Blanpain, B.; Guo, M. Effect of Alumina Morphology on the Clustering of Alumina Inclusions in Molten Iron. ISIJ Int. 2016, 56, 926–935. [Google Scholar] [CrossRef]
- Inoue, R.; Ueda, S.; Ariyama, T.; Suito, H. Extraction of Nonmetallic Inclusion Particles Containing MgO from Steel. ISIJ Int. 2011, 51, 2050–2055. [Google Scholar] [CrossRef]
- Inoue, R.; Kimura, R.; Ueda, S.; Suito, H. Applicability of Nonaqueous Electrolytes for Electrolytic Extraction of Inclusion Particles Containing Zr, Ti, and Ce. ISIJ Int. 2013, 53, 1906–1912. [Google Scholar] [CrossRef]
- You, D.; Michelic, S.K.; Bernhard, C.; Loder, D.; Wieser, G. Modeling of Inclusion Formation during the Solidification of Steel. ISIJ Int. 2016, 56, 1770–1778. [Google Scholar] [CrossRef]
- Petersen, S.; Hack, K. The thermochemistry library ChemApp and its applications. IJMR 2007, 98, 935–945. [Google Scholar] [CrossRef]
- You, D.; Bernhard, C.; Wieser, G.; Michelic, S. Microsegregation Model with Local Equilibrium Partition Coefficients During Solidification of Steels. Steel Res. Int. 2016, 87, 840–849. [Google Scholar] [CrossRef]
- Ohnaka, I. Mathematical Analysis of Solute Redistribution during solidification with doffusion in Solid Phase. ISIJ Trans. 1986, 26, 1045–1051. [Google Scholar] [CrossRef]
- You, D.; Michelic, S.; Bernhard, C. Formation of Multi-Type Inclusions during the Cooling and Solidification of Steel: A Trend Model. Metals 2018, 8, 452. [Google Scholar] [CrossRef]
- Mayerhofer, A.; Michelic, S.K.; Bernhard, C. Analyse von Fe, Mn-Oxiden mittels REM/EDX: Bringt die elektrolytische Extraktion was sie verspricht? In Proceedings of the Materialographietagung 2019, Dresden, Germany, 18–21 September 2019; pp. 181–186. [Google Scholar]
- Janis, D.; Inoue, R.; Karasev, A.; Jönsson, P.G. Application of Different Extraction Methods for Investigation of Nonmetallic Inclusions and Clusters in Steels and Alloys. Adv. Mater. Sci. Eng. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Pistorius, P.C.; Patadia, A. The Steel Matrix Affects Microanalysis of CaO-Al2O3-CaS Inclusions. In Proceedings of the 8th International Conference on Clean Steel—Clean Steel 8, Budapest, Hungary, 14–16 May 2012. [Google Scholar]
- Drouin, D.; Couture, A.R.; Joly, D.; Tastet, X.; Aimez, V.; Gauvin, R. CASINO V2.42: A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 2007, 29, 92–101. [Google Scholar] [CrossRef]
- Fischer, W.A.; Fleischer, H.J. Die Reaktionen von manganhaltigem Eisen mit seinen Oxyden im Kalktiegel bei 1600 bis 1800 °C. Archiv Eisenhüttenwesen 1961, 32, 305–313. [Google Scholar] [CrossRef]
- Michelic, S.; Wieser, G.; Bernhard, C. On the Representativeness of Automated SEM/EDS Analyses for Inclusion Characterization with Special Regard to the Measured Sample Area. ISIJ Int. 2011, 51, 769–775. [Google Scholar] [CrossRef][Green Version]
ID | Mn | O | Fe | Mn/O |
---|---|---|---|---|
(-) | (%) | (%) | (%) | (-) |
1 | 0.050 | 0.140 | bal. | 0.36 |
2 | 0.105 | 0.119 | bal. | 0.88 |
3 | 0.250 | 0.126 | bal. | 1.98 |
4 | 0.323 | 0.092 | bal. | 3.51 |
5 | 0.341 | 0.080 | bal. | 4.26 |
6 | 0.427 | 0.079 | bal. | 5.41 |
7 | 0.759 | 0.061 | bal. | 12.44 |
Chemical composition evaluated by OES and LECO spectrometry |
Calibration Parameter | Threshold (Operational Grayscale Units) |
---|---|
Matrix cross-section | ≥24,000 |
NMI cross-section | <2000 |
Analyzed features | <20,000 |
Matrix filter | <2000 |
NMI filter | >24,000 |
Analyzed features | >10,000 |
Exclusionary results | EDS Threshold (%) |
Scratches, porosities | Fe + C ≥ 99.9 |
Grinding residues | Fe + C + Si ≥ 99.9 |
Polishing residues | Fe + C + Si + Ar + F + Na + Cl + K ≥ 99.9 |
Insufficient EDS | O + S + N = 0 |
Characteristic | A1 | A2 | B1 | B2 | C1 | C2 | Outcome |
---|---|---|---|---|---|---|---|
Distinctive morphology | + | + | - | - | - | - | 1—Influence of electrolytic extraction on morphology, 2—FactSage verification, 3—Influence of electrolytic extraction on chemistry, 4—Quantification of matrix influence |
Optimum EDS conditions | + | - | + | - | + | - | |
Analysis without matrix interaction | + | + | + | + | - | + | |
1,2,3 | 1,3 | 2,3 | 3 | 4 | 4 |
Sample | %FeO Content of Nonmetallic Inclusion | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Defined | Calculated by Segregation Model | SEM/EDS Measurements | Calculated Values for Interpretation | |||||||||||||
Nr. | Mn/O | Slag fs = 0 | Slag fs = 1 | Mono fs = 0 | Mono fs = 1 | A1 | A2 | B1 | B2 | C1 | C2 | A(1-2) | B(1-2) | C(1-2) | A | B |
1 | 0.357 | 83.3 | 97.4 | - | - | - | - | 90.6 ± 2.0 | 92.9 ± 1.0 | 97.9 ± 0.8 | 93.2 ± 1.5 | - | −2.4 | 4.7 | - | 91.8 |
2 | 0.882 | 70.0 | 92.0 | - | - | - | - | 85.6 ± 1.2 | 83.3 ± 2.3 | 96.3 ± 2.0 | 83.1 ± 2.2 | - | 2.3 | 13.2 | - | 84.4 |
3 | 1.978 | 60.0 | 85.0 | 41.0 | 54.0 | 40.5 ± 2.6 | 44.5 ± 0.5 | 62.7 ± 2.0 | 58.4 ± 1.0 | 93.0 ± 2.3 | 63.0 ± 2.2 | −4.1 | 4.2 | 30.0 | 42.5 | 60.6 |
4 | 3.496 | 45.0 | 75.0 | 30.0 | 45.0 | 39.8 ± 1.2 | 36.9 ± 1.1 | - | - | 88.2 ± 6.0 | 48.3 ± 4.1 | 2.9 | - | 39.8 | 38.3 | - |
5 | 4.252 | 40.0 | 70.0 | 30.0 | 45.0 | 38.9 ± 3.2 | 35.8 ± 1.6 | - | - | 89.6 ± 4.8 | 48.4 ± 3.5 | 3.1 | - | 41.2 | 37.4 | - |
6 | 5.351 | 35.0 | 65.0 | 24.0 | 45.0 | 32.8 ± 3.6 | 26.7 ± 0.9 | - | - | 85.8 ± 6.6 | 35.8 ± 6.3 | 6.2 | - | 49.9 | 29.7 | - |
7 | 12.422 | 21.0 | 22.0 | 14.0 | 17.0 | 15.0 ± 0.2 | 10.6 ± 1.0 | - | - | 84.9 ± 6.5 | 8.0 ± 2.0 | 4.4 | - | 76.9 | 12.8 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayerhofer, A.; You, D.; Presoly, P.; Bernhard, C.; Michelic, S.K. Study on the Possible Error Due to Matrix Interaction in Automated SEM/EDS Analysis of Nonmetallic Inclusions in Steel by Thermodynamics, Kinetics and Electrolytic Extraction. Metals 2020, 10, 860. https://doi.org/10.3390/met10070860
Mayerhofer A, You D, Presoly P, Bernhard C, Michelic SK. Study on the Possible Error Due to Matrix Interaction in Automated SEM/EDS Analysis of Nonmetallic Inclusions in Steel by Thermodynamics, Kinetics and Electrolytic Extraction. Metals. 2020; 10(7):860. https://doi.org/10.3390/met10070860
Chicago/Turabian StyleMayerhofer, Alexander, Dali You, Peter Presoly, Christian Bernhard, and Susanne K. Michelic. 2020. "Study on the Possible Error Due to Matrix Interaction in Automated SEM/EDS Analysis of Nonmetallic Inclusions in Steel by Thermodynamics, Kinetics and Electrolytic Extraction" Metals 10, no. 7: 860. https://doi.org/10.3390/met10070860
APA StyleMayerhofer, A., You, D., Presoly, P., Bernhard, C., & Michelic, S. K. (2020). Study on the Possible Error Due to Matrix Interaction in Automated SEM/EDS Analysis of Nonmetallic Inclusions in Steel by Thermodynamics, Kinetics and Electrolytic Extraction. Metals, 10(7), 860. https://doi.org/10.3390/met10070860