Characterization of Influences of Steel-Aluminum Dissimilar Joints with Intermediate Zinc Layer
Abstract
1. Introduction
2. Materials and Experimental Procedure
3. Phase Classification and Results of Tensile Testing
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bian, J.; Zhu, Y.; Liu, X.-H.; Wang, G.-d. Development of Hot Dip Galvanized Steel Strip and Its Application in Automobile Industry. J. Iron Steel Res. Int. 2006, 13, 47–50. [Google Scholar] [CrossRef]
- Radscheit, C.R. Laserstrahlfügen von Aluminium mit Stahl; BIAS-Verlag: Bremen, Germany, 1997. [Google Scholar]
- Heumann, T.; Dittrich, S. Über die Kinetik der Reaktion von festem und flüssigem Aluminium mit Eisen. Zeitschrift für Metallkunde 1959, 50, 617–625. [Google Scholar]
- Li, Y.; Liu, Y.; Yang, J. First principle calculations and mechanical properties of the intermetallic compounds in a laser welded steel/aluminum joint. Opt. Laser Technol. 2020, 122, 105875. [Google Scholar] [CrossRef]
- Hoffmann, H.R. Über das Verhalten von Zink und Zink-Kupfer-Titan-Aluminium-Legierungen beim Kriechen unter hohen. Lasten. Dissertation, Technischen Universität Berlin, Berlin, Germany, 1971. [Google Scholar]
- Goecke, S.-F. Energiereduziertes Lichtbogen-Fügeverfahren für Wärmeempfindliche Werkstoffe. In Proceedings of the Schweißen und Schneiden 2005—Vorträge der gleichnamigen Großen Schweißtechnischen Tagung, Essen, Germany, 12–14 September 2005; pp. 44–48. [Google Scholar]
- Jank, N.; Staufer, H.; Bruckner, J. Schweißverbindungen von Stahl mit Aluminium—eine Perspektive für die Zukunft. Berg Hüttenmännische Monatshefte 2008, 153, 189–192. [Google Scholar] [CrossRef]
- Yuce, C.; Karpat, F.; Yavuz, N. Investigations on the microstructure and mechanical properties of laser welded dissimilar galvanized steel–Aluminum joints. Int. J. Adv. Manuf. Technol. 2019, 104, 2693–2704. [Google Scholar] [CrossRef]
- Goldmann, F.; Hahn, O.; Tetzlaff, U.; Kunze, S. Gefügemorphologie beim Widerstandspunktschweißen von Aluminium-Stahl-Verbindungen. Schweißen Schneiden 2015, 67, 238–244. [Google Scholar]
- Leuschen, B. Beitrag zum Tragverhalten von Aluminium- und Aluminium/Stahl-Widerstandspunktschweissverbindungen bei Verschiedenartiger Beanspruchung. Ph.D. Thesis, RWTH, Fak. f. Maschinenwesen, Aachen, Germany, 1984. [Google Scholar]
- Pereira, A.; Cabrinha, A.; Rocha, F.; Marques, P.; Fernandes, F.; Alves de Sousa, R. Dissimilar Metals Laser Welding between DP1000 Steel and Aluminum Alloy 1050. Metals 2019, 9, 102. [Google Scholar] [CrossRef]
- Guan, Q.; Long, J.; Yu, P.; Jiang, S.; Huang, W.; Zhou, J. Effect of steel to aluminum laser welding parameters on mechanical properties of weld beads. Opt. Laser Technol. 2019, 111, 387–394. [Google Scholar] [CrossRef]
- Lu, D.Q.; Cui, L.; Chen, H.X.; Chang, Y.Q.; Peng, Z.B.; He, D.Y. Laser-MIG Hybrid Keyhole Welded 6mm Steel/Aluminum Butt Joints. Mater. Sci. Forum 2019, 944, 581–592. [Google Scholar] [CrossRef]
- Matsuda, T.; Adachi, H.; Sano, T.; Yoshida, R.; Hori, H.; Ono, S.; Hirose, A. High-frequency linear friction welding of aluminum alloys to stainless steel. J. Mater. Process. Technol. 2019, 269, 45–51. [Google Scholar] [CrossRef]
- Mrzljak, S.; Gelinski, N.; Hülsbusch, D.; Schumacher, E.; Boehm, S.; Walther, F. Influence of Process Parameters, Surface Topography and Corrosion Condition on the Fatigue Behavior of Steel/Aluminum Hybrid Joints Produced by Magnetic Pulse Welding. Key Eng. Mater. 2019, 809, 197–202. [Google Scholar] [CrossRef]
- Kashani, H.T.; Kah, P.; Martikainen, J. Laser Overlap Welding of Zinc-coated Steel on Aluminum Alloy. Phys. Procedia 2015, 78, 265–271. [Google Scholar] [CrossRef]
- Köster, M.; Schuhmacher, B.; Sommer, D. The influence of the zinc content on the lattice constants and structure of the intermetallic compound Fe2Al5. Steel Res. 2001, 72, 371–375. [Google Scholar] [CrossRef]
- Meco, S.; Ganguly, S.; Williams, S.; McPherson, N. Effect of Laser Processing Parameters on the Formation of Intermetallic Compounds in Fe-Al Dissimilar Welding. J. Mater. Eng. Perform. 2014, 23, 3361–3370. [Google Scholar] [CrossRef]
- Elrefaey, A.; Gouda, M.; Takahashi, M.; Ikeuchi, K. Characterization of Aluminum/Steel Lap Joint by Friction Stir Welding. J. Mater. Eng. Perform. 2005, 14, 10–17. [Google Scholar] [CrossRef]
- Eichhorn, F.; Emonts, M.; Leuschen, B. Widerstandspunktschweißen der Werkstoffkombination Alumnium-Stahl. Schweißen Schneiden 1982, 34, 15–20. [Google Scholar]
- Ozaki, H.; Kutsuna, M. Laser-roll welding of a dissimilar metal joint of low carbon steel to aluminium alloy using 2 kW fibre laser. Weld. Int. 2009, 23, 345–352. [Google Scholar] [CrossRef]
- Ozaki, H.; Kutsuna, M. Dissimilar Metal Joining of Zinc Coated Steel and Aluminum Alloy by Laser Roll Welding. In Welding Processes; Kovacevic, R., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0854-2. [Google Scholar]
- Pardal, G.; Meco, S.; Ganguly, S.; Williams, S.; Prangnell, P. Dissimilar metal laser spot joining of steel to aluminium in conduction mode. Int. J. Adv. Manuf. Technol. 2014, 73, 365–373. [Google Scholar] [CrossRef]
- Engelbrecht, L.; Meier, O.; Ostendorf, A.; Haferkamp, H. Einflüsse auf die mechanischen Eigenschaften lasergelöteter Mischverbindungen aus Stahl und Aluminium. Materialwissenschaft Werkstofftechnik 2006, 37, 272–278. [Google Scholar] [CrossRef]
- Girard, M.; Huneau, B.; Genevois, C.; Sauvage, X.; Racineux, G. Friction stir diffusion bonding of dissimilar metals. Sci. Technol. Weld. Join. 2013, 15, 661–665. [Google Scholar] [CrossRef]
- Meco, S.; Cozzolino, L.; Ganguly, S.; Williams, S.; McPherson, N. Laser welding of steel to aluminium: Thermal modelling and joint strength analysis. J. Mater. Process. Technol. 2017, 247, 121–133. [Google Scholar] [CrossRef]
- Langner, J.; Stonis, M.; Behrens, B.-A. Hybridschmieden eines Druckflansches. Available online: https://www.umformtechnik.net/binary_data/3165637_hybridschmieden-langner.pdf (accessed on 9 January 2020).
- Behrens, B.-A.; Kosch, K.-G. Influence of different alloying elements on the intermetallic phase seam thickness of compound forged steel-aluminum parts. Prod. Eng. Res. Dev. 2011, 5, 517–522. [Google Scholar] [CrossRef]
- Behrens, B.-A.; Odening, D.; Holz, F.; Kosch, K.-G. Finite Elemente Modellierung der induktiven Erwärmung hybrider Stahl-Aluminium Bauteile. Available online: https://www.umformtechnik.net/binary_data/99892_fem_erw_rmung_ifum_kosch.pdf (accessed on 6 January 2020).
- Behrens, B.-A.; Kosch, K.-G. Development of the heating and forming strategy in compound forging of hybrid steel-aluminum parts. Materialwissenschaft Werkstofftechnik 2011, 42, 973–978. [Google Scholar] [CrossRef]
- Behrens, B.-A.; Holz, F. Verbundschmieden hybrider Stahl-Aluminium Bauteile. Materialwissenschaft Werkstofftechnik 2008, 39, 599–603. [Google Scholar] [CrossRef]
- Bick, T. Hybrides Verbundschmieden von Aluminium und Stahl durch Bildung einer Zinkzwischenschicht: Bestimmung der Prozesseinflussgrößen und Verbindungseigenschaften. Masterarbeit; Technische Universität Clausthal: Clausthal, Germany, 2018. [Google Scholar]
- Bick, T.; Treutler, K.; Wesling, V. Charakterisierung der Verbindungseigenschaften hybrid verbundgeschmiedeter Stahl Aluminium Mischverbindungen in Abhängigkeit der Zinkschichtzusammensetzungen; Assistentenseminar Füge- und Schweißtechnik No. 39; DVS Media: Düsseldorf, Germany, 2019. [Google Scholar]
- Hoppe, C.; Ebbert, C.; Grothe, R.; Schmidt, H.C.; Hordych, I.; Homberg, W.; Maier, H.J.; Grundmeier, G. Influence of the Surface and Heat Treatment on the Bond Strength of Galvanized Steel/Aluminum Composites Joined by Plastic Deformation. Adv. Eng. Mater. 2016, 18, 1371–1380. [Google Scholar] [CrossRef]
- Bick, T.; Treutler, K.; Wesling, V. Soldering of Steel Sheets and Zinc Coated Aluminum by Hybrid Composite Forging; 2018. [Google Scholar]
- Ghosh, G. Al-Fe-Zn Ternary Phase Diagram Evaluation. Available online: http://www.msi-eureka.com/full-html/10.17658.3.6/Al-Fe-Zn_Ternary_Phase_Diagram_Evaluation/ (accessed on 20 August 2019).
- Petrov, D.; Watson, A.; Gröbner, J.; Rogl, P.; Tedenac, J.; Bulanova, M.; Turkevich, V.; Lukas, H. Al-Mg-Zn Ternary Phase Diagram Evaluation. Available online: http://www.msi-eureka.com/full-html/10.11491.3.7/Al-Mg-Zn_Ternary_Phase_Diagram_Evaluation/ (accessed on 28 January 2020).
- Suzuki, T. Al-Si-Zn Ternary Phase Diagram Evaluation. Available online: http://www.msi-eureka.com/full-html/10.14605.1.6/Al-Si-Zn_Ternary_Phase_Diagram_Evaluation/ (accessed on 29 January 2020).
- Silvayeh, Z.; Vallant, R.; Sommitsch, C.; Götzinger, B.; Karner, W.; Hartmann, M. Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks. Metall. Mater. Trans. A 2017, 48, 5376–5386. [Google Scholar] [CrossRef]
- Schuerz, S.; Fleischanderl, M.; Luckeneder, G.H.; Preis, K.; Haunschmied, T.; Mori, G.; Kneissl, A.C. Corrosion behaviour of Zn–Al–Mg coated steel sheet in sodium chloride-containing environment. Corros. Sci. 2009, 51, 2355–2363. [Google Scholar] [CrossRef]
- Springer, H.; Szczepaniak, A.; Raabe, D. On the role of zinc on the formation and growth of intermetallic phases during interdiffusion between steel and aluminium alloys. Acta Mater. 2015, 96, 203–211. [Google Scholar] [CrossRef]
Material | Tensile Strength | Yield Strength | Elastic Modulus | Elongation at Break | Yield Point |
AlMg4.5Mn | 329 MPa | 223 MPa | 92,400 MPa | 14.36% | 328 MPa |
DX54 | 260 MPa | 120 MPa | 210,000 MPa | 36% | - |
AlMg4.5Mn | |||||||
---|---|---|---|---|---|---|---|
Al | Mg | Mn | Fe | Si | Cr | Zn | Cu |
94.3 | 4.489 | 0.515 | 0.3042 | 0.1555 | 0.0796 | 0.0470 | 0.0403 |
DX54 | |||||||
Fe | C | Si | Mn | P | S | Ti | Al |
99.47 | 0.011 | 0.029 | 0.113 | 0.012 | 0.0082 | 0.094 | 0.062 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bick, T.; Heuler, V.; Treutler, K.; Wesling, V. Characterization of Influences of Steel-Aluminum Dissimilar Joints with Intermediate Zinc Layer. Metals 2020, 10, 442. https://doi.org/10.3390/met10040442
Bick T, Heuler V, Treutler K, Wesling V. Characterization of Influences of Steel-Aluminum Dissimilar Joints with Intermediate Zinc Layer. Metals. 2020; 10(4):442. https://doi.org/10.3390/met10040442
Chicago/Turabian StyleBick, Tobias, Verena Heuler, Kai Treutler, and Volker Wesling. 2020. "Characterization of Influences of Steel-Aluminum Dissimilar Joints with Intermediate Zinc Layer" Metals 10, no. 4: 442. https://doi.org/10.3390/met10040442
APA StyleBick, T., Heuler, V., Treutler, K., & Wesling, V. (2020). Characterization of Influences of Steel-Aluminum Dissimilar Joints with Intermediate Zinc Layer. Metals, 10(4), 442. https://doi.org/10.3390/met10040442