Determinants of E-Government Use in the European Union: An Empirical Analysis
Abstract
:1. Introduction
2. Literature Review
3. Research Methodology
4. Results and Discussion
4.1. Descriptive Statistics
4.2. Model Estimates
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. eGovernment and Digital Public Services. 2022. Available online: https://digital-strategy.ec.europa.eu/en/policies/egovernment (accessed on 20 February 2023).
- Mouna, A.; Nedra, B.; Khaireddine, M. International comparative evidence of e-government success and economic growth: Technology adoption as an anti-corruption tool. Transform. Gov. People Process. Policy 2020, 14, 713–736. [Google Scholar] [CrossRef]
- Khan, F.N.; Majeed, M.T. ICT and e-Government as the sources of economic growth in information age: Empirical evidence from South Asian economies. South Asian Stud. 2020, 34, 227–249. [Google Scholar]
- European Commission. eGovernment Benchmark 2022. Available online: https://digital-strategy.ec.europa.eu/en/library/egovernment-benchmark-2022 (accessed on 20 February 2023).
- Deloitte. E-Government in Europe: Rebooting the Public Service. 2021. Available online: https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/public-sector/lu-e-government-in-europe.pdf (accessed on 20 February 2023).
- OECD. Education at a Glance 2022: OECD Indicators. OECD iLibrary. 2022. Available online: https://www.oecd-ilibrary.org/sites/510a82b5-en/index.html?itemId=/content/component/510a82b5-en (accessed on 20 January 2023).
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- ONS. Exploring the UK’s Digital Divide. 2019. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/householdcharacteristics/homeinternetandsocialmediausage/articles/exploringtheuksdigitaldivide/2019-03-04 (accessed on 28 January 2023).
- Hauner, D.; Kyobe, A. Determinants of Government Efficiency. World Dev. 2010, 38, 1527–1542. [Google Scholar] [CrossRef]
- Voghouei, H.R.; Jamali, G.R. E-government adoption and implementation barriers: A case study of Iranian organizations. Inform. Technol. Dev. 2018, 24, 478–505. [Google Scholar]
- Lizińska, W.; Marks-Bielska, R.; Babuchowska, K.; Wojarska, M. Factors contributing to the institutional efficiency of local governments in the administrative area. Equilibrium 2017, 12, 339–353. [Google Scholar] [CrossRef] [Green Version]
- Balaguer-Coll, M.T.; Brun-Martos, M.I.; Márquez-Ramos, L.; Prior, D. Local government efficiency: Determinants and spatial interdependence. Appl. Econ. 2019, 51, 1478–1494. [Google Scholar] [CrossRef]
- Halaskova, R.; Halaskova, M.; Gavurova, B.; Kocisova, K. The Local Governments Efficiency in the EU Countries: Evaluation by Using the Data Envelopment Analysis. Montenegrin J. Econ. 2022, 18, 127–137. [Google Scholar] [CrossRef]
- Wen, J.; Deng, P.; Zhang, Q.; Chang, C.-P. Is Higher Government Efficiency Bringing about Higher Innovation? Technol. Econ. Dev. Econ. 2021, 27, 626–655. [Google Scholar] [CrossRef]
- Ding, Y.; Chin, L.; Li, F.; Deng, P. How Does Government Efficiency Affect Health Outcomes? The Empirical Evidence from 156 Countries. Int. J. Environ. Res. Public Health 2022, 19, 9436. [Google Scholar] [CrossRef] [PubMed]
- Reinecke, A.; Schmerer, H.-J. Government efficiency and exports in China. J. Chin. Econ. Bus. Stud. 2017, 15, 249–268. [Google Scholar] [CrossRef]
- Chen, H.; Yoon, S.S. Government efficiency and enterprise innovation—Evidence from China. Asian J. Technol. Innov. 2019, 27, 280–300. [Google Scholar] [CrossRef]
- Amir, A.; Gokmenoglu, K.K. Analyzing the Role of Government Efficiency on Financial Development for OECD Countries. Rev. Econ. Perspect. 2020, 20, 445–469. [Google Scholar] [CrossRef]
- Gupta, S.; Verhoeven, M. The efficiency of government expenditure: Experiences from Africa. J. Policy Model. 2001, 23, 433–467. [Google Scholar] [CrossRef] [Green Version]
- Geys, B. Looking across borders: A test of spatial policy interdependence using local government efficiency ratings. J. Urban Econ. 2006, 60, 443–462. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.C.; Peng, C.J.; Wu, P.C. Local government efficiency evaluation: Consideration of undesirable outputs and super-efficiency. Afr. J. Bus. Manag. 2011, 5, 4746–4754. [Google Scholar]
- Asatryan, Z.; De Witte, K. Direct democracy and local government efficiency. Eur. J. Political Econ. 2015, 39, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-P.; Wen, J.; Zheng, M.; Dong, M.; Hao, Y. Is higher government efficiency conducive to improving energy use efficiency? Evidence from OECD countries. Econ. Model 2018, 72, 65–77. [Google Scholar] [CrossRef]
- Seo, I.; Kim, Y.; Choi, J. Assessment of efficiency in public service–focused on Government 3.0 case in Korea. Total Qual. Manag. Bus. 2018, 29, 1161–1184. [Google Scholar] [CrossRef]
- Alonso, J.M.; Andrews, R. Fiscal decentralisation and local government efficiency: Does relative deprivation matter? Environ. Plan. C Politics-Space 2019, 37, 360–381. [Google Scholar] [CrossRef]
- Chen, Z.; Paudel, K.P. Economic openness, government efficiency, and urbanization. Rev. Dev. Econ. 2021, 25, 1351–1372. [Google Scholar] [CrossRef]
- Pacheco, F.; Sánchez, R.; Villena, M.G. Estimating local government efficiency using a panel data parametric approach: The case of Chilean municipalities. Appl. Econ. 2021, 53, 292–314. [Google Scholar] [CrossRef]
- Balaguer-Coll, M.T.; Narbón-Perpiñá, I.; Peiró-Palomino, J.; Tortosa-Ausina, E. Quality of government and economic growth at the municipal level: Evidence from Spain. J. Reg. Sci. 2021, 62, 96–124. [Google Scholar] [CrossRef]
- UNDP (United Nations Development Programme). Human Development Report 2020: The Next Frontier: Human Development and the Anthropocene. 2020. Available online: https://hdr.undp.org/content/human-development-report-2020 (accessed on 28 January 2023).
- Akman, I.; Yazici, A.; Mishra, A.; Arifoglu, A. E-Government: A global view and an empirical evaluation of some attributes of citizens. Gov. Inf. Q. 2005, 22, 239–257. [Google Scholar] [CrossRef]
- Horobet, A.; Mnohoghitnei, I.; Zlatea, E.M.L.; Belascu, L. The Interplay between Digitalization, Education and Financial Development: A European Case Study. J. Risk Financ. Manag. 2022, 15, 135. [Google Scholar] [CrossRef]
- Cerna, M.; Hejdukova, P. COVID-19 Pandemic: New Opportunities for Employment and Education? EJIS 2022, 14, 252–264. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs (DESA). UN E-Government Survey 2022. Available online: https://desapublications.un.org/publications/un-e-government-survey-2022 (accessed on 20 February 2023).
- Mnohoghitnei, I.; Horobeț, A.; Belașcu, L. Bitcoin is so Last Decade—How Decentralized Finance (DeFi) could Shape the Digital Economy. Eur. J. Interdiscip. Stud. 2022, 14, 87–99. [Google Scholar] [CrossRef]
- Constantinescu, R.; Edu, T. Internet of Things (IoT) as an Instrument to Improve Business and Marketing Strategies. A Literature Review. Eur. J. Interdiscip. Stud. 2022, 14, 143–154. [Google Scholar] [CrossRef]
- Spacek, D.; Csoto, M.; Urs, N. Questioning the Real Citizen-Centricity of e-Government Development: Digitalization of G2C Services in Selected CEE Countries. NISPAcee J. Public Adm. Policy 2020, 13, 213–243. [Google Scholar] [CrossRef]
- Dobrolyubova, E.; Klochkova, E.; Alexandrov, O. Digitalization and Effective Government: What Is the Cause and What Is the Effect? In Digital Transformation and Global Society. DTGS 2019. Communications in Computer and Information Science; Alexandrov, D., Boukhanovsky, A., Boukhanovsky, A., Kabanov, Y., Koltsova, O., Musabirov, I., Eds.; Springer: Cham, Switzerland, 2019; Volume 1038. [Google Scholar] [CrossRef]
- Ahmad, J.; Nilwana, A.; Hamid, H. Digitalization Era: Website Based E-Government. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 717, p. 012047. [Google Scholar]
- Mensah, I.K.; Zeng, G.; Luo, C. E-Government Services Adoption: An Extension of the Unified Model of Electronic Government Adoption. SAGE Open 2020, 10, 215824402093359. [Google Scholar] [CrossRef]
- Chen, L.; Aklikokou, A.K. Determinants of E-government Adoption: Testing the Mediating Effects of Perceived Usefulness and Perceived Ease of Use. Int. J. Public Adm. 2020, 43, 850–865. [Google Scholar] [CrossRef]
- Williams, M. E-government adoption in Europe at regional level. Transform. Gov. People Process. Policy 2008, 2, 47–59. [Google Scholar] [CrossRef]
- Hsiao, C. Panel data analysis—Advantages and challenges. TEST 2007, 16, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Baltagi, B. Econometric Analysis of Panel Data, 3rd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2005. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; The MIT Press: Cambridge, MA, USA, 2010; ISBN 9780262232586. [Google Scholar]
- Blundell, R.; Bond, S.; Windmeijer, F. Estimation in Dynamic Panel Data Models: Improving on the Performance of the Standard GMM Estimator; Emerald Group Publishing Limited: Bingley, UK, 2001; Volume 15, pp. 53–91. [Google Scholar]
- Roodman, D. How to do Xtabond2: An Introduction to Difference and System GMM in Stata. Stata J. 2009, 9, 86–136. [Google Scholar] [CrossRef] [Green Version]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econ. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Akhtar, P.; Zaefarian, G. Dealing with endogeneity bias: The generalized method of moments (GMM) for panel data. Ind. Mark. Manag. 2018, 71, 69–78. [Google Scholar] [CrossRef]
- Li, J.; Ding, H.; Hu, Y.; Wan, G. Dealing with dynamic endogeneity in international business research. J. Int. Bus Stud. 2021, 52, 339–362. [Google Scholar] [CrossRef]
- Bun, M.J.; Windmeijer, F. The weak instrument problem of the system GMM estimator in dynamic panel data models. Econom. J. 2010, 13, 95–126. [Google Scholar] [CrossRef] [Green Version]
- Araujo, J.F.F.E.; Tejedo-Romero, F. Women’s political representation and transparency in local governance. Local Gov. Stud. 2016, 42, 885–906. [Google Scholar] [CrossRef]
- Hansen, L.P.; Heaton, J.; Yaron, A. Finite-Sample Properties of Some Alternative GMM Estimators. J. Bus. Econ. Stat. 1996, 14, 262–280. [Google Scholar] [CrossRef]
- Hansen, B.E.; Lee, S. Inference for Iterated GMM Under Misspecification. Econometrica 2021, 89, 1419–1447. [Google Scholar] [CrossRef]
- Kripfganz, S. Generalized method of moments estimation of linear dynamic panel data models. In Proceedings of the London Stata Conference, Exeter, UK, 5–6 September 2019; Volume 17. [Google Scholar]
- Windmeijer, F. A Finite Sample Correction for the Variance of Linear Efficient Two-Step GMM Estimators. J. Econom. 2005, 126, 25–51. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Sargan, J.D. The Estimation of Economic Relationships Using Instrumental Variables. Econometrica 1958, 26, 393–415. [Google Scholar] [CrossRef]
- Hansen, L. Large Sample Properties of Generalized Method of Moments Estimators. Econometrica 1982, 50, 1029–1054. [Google Scholar] [CrossRef]
- Elbahnasawy, N.G. E-government, internet adoption, and corruption: An empirical investigation. World Dev. 2014, 57, 114–126. [Google Scholar] [CrossRef]
- Elbahnasawy, N.G. Can e-government limit the scope of the informal economy? World Dev. 2021, 139, 105341. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, S.W. Untangling the causal relationship between government budget and current account deficits in OECD countries: Evidence from bootstrap panel Granger causality. Int. Rev. Econ. Financ. 2014, 31, 95–104. [Google Scholar] [CrossRef]
- Puente-Ajovin, M.; Sanso-Navarro, M. Granger causality between debt and growth: Evidence from OECD countries. Int. Rev. Econ. Financ. 2015, 35, 66–77. [Google Scholar] [CrossRef]
- Mutascu, M. A bootstrap panel Granger causality analysis of government revenues and expenditures in the PIIGS countries. Econ. Bull. 2015, 35, 2000–2004. [Google Scholar]
- Mutascu, M. A bootstrap panel Granger causality analysis of energy consumption and economic growth in the G7 countries. Renew. Sustain. Energy Rev. 2016, 63, 166–171. [Google Scholar] [CrossRef]
- Rodriguez-Hevía, L.F.; Navío-Marco, J.; Ruiz-Gómez, L.M. Citizens’ Involvement in E-Government in the European Union: The Rising Importance of the Digital Skills. Sustainability 2020, 12, 6807. [Google Scholar] [CrossRef]
- Yera, A.; Arbelaitz, O.; Jauregui, O.; Muguerza, J. Characterization of e-Government adoption in Europe. PLoS ONE 2020, 15, e0231585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, T. Determining the type of e-government use. Gov. Inf. Q. 2014, 31, 211–220. [Google Scholar] [CrossRef]
- Gerpott, T.J.; Ahmadi, N. Use levels of electronic government services among German citizens: An empirical analysis of objective household and personal predictors. Transform. Gov. People Process Policy 2016, 10, 637–668. [Google Scholar] [CrossRef]
- Zhao, F.; Collier, A.; Deng, H. A multidimensional and integrative approach to study global digital divide and e-government development. Inf. Technol. People 2014, 27, 38–62. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Das, A.; Joseph, D. Country-level determinants of e-government maturity. Commun. Assoc. Inf. Syst. 2007, 20, 40. [Google Scholar] [CrossRef]
- Das, A.; Singh, H.; Joseph, D. A longitudinal study of e-government maturity. Inf. Manag. 2017, 54, 415–426. [Google Scholar] [CrossRef] [Green Version]
- Talukder, S.; Chiong, R.; Dhakal, S.; Sorwar, G.; Bao, Y. A two-stage structural equation modeling-neural network approach for understanding and predicting the determinants of m-government service adoption. J. Syst. Inf. Technol. 2019, 21, 419–438. [Google Scholar] [CrossRef]
- Anthes, G. Estonia: A model for e-government. Commun. ACM 2015, 58, 18–20. [Google Scholar] [CrossRef]
Authors | Period and Region/Countries/Entities Studied | Empirical Model | Main Input Variable(s) | Output(s) |
---|---|---|---|---|
Hauner and Kyobe [9] | 1980–2004; 114 countries | Panel model | Education and health spending Years of schooling Income per capita | Government efficiency |
Voghouei and Jamali [10] | 2003–2010; 51 countries | Dynamic panel model—system-GMM | Information technology expenditure by government Total information technology expenditure in economy Consumer price index Transparency Corruption Ethnic fractionalization | Government efficiency (government spending as share of GDP) |
Lizińska et al. [11] | 2015–2016 1220 municipalities in Poland | Survey | Number of tasks actually implemented by local governments Number of tasks which could be implemented | Institutional efficiency of local governments |
Balaguer-Coll et al. [12] | 2009–2015; The Valencian Region | Robust order methodology | Population density Unemployed job seekers Disposable income Accommodation vacancies Political ideology of the incumbent party Herfindahl index Voter turnout in local elections Tax revenues Transfer revenues Indebtedness Number of mistakes in the budgetary statements | Index of (in)efficiency |
Halaskova et al. [13] | 2012–2015 and 2015–2018; 27 EU countries | Data envelopment analysis (DEA) | Local government expenditure by function | Government effectiveness Corruption perceptions Index |
Wen et al. [14] | 1996–2018; 166 countries | Panel data | Government efficiency Bureaucracy quality | Patents and trademarks |
Ding et al. [15] | 2002–2018; 156 countries | Panel data | Government efficiency | Health outcomes (disability-adjusted life years (DALYs)) |
Reinecke and Schmerer [16] | 2001–2006; Chinese firms | Panel data regression | Government efficiency Firm age Sales State-owned enterprises Employment and capital stock Total factor productivity (TFP) | Export share on total output |
Chen and Yoon [17] | 2010–2016; A-share listed firms from 27 Chinese provincial government | 2SLS regression | Administrative efficiency of local governments | R&D expenditure over total assets Number of patent applications |
Amir and Gokmenoglu [18] | 2002–2015; 31 OECD countries | Panel data model | Government efficiency Corruption Employment Population Urbanization | Financial development |
Gupta and Verhoeven [19] | 1984–1995; 37 countries in Africa | Free disposal hull (FDH) analysis | Education and health spending by the government | Life expectancy Infant mortality Immunizations against diseases School enrolment Adult illiteracy |
Geys [20] | 2000; Flemish region in Belgium | Stochastic parametric reference technology | Current expenditures in the municipality | Number of subsistence grants beneficiaries Number of students in local primary schools Public recreational facilities Length of municipal roads. |
Liu et al. [21] | 2007; 22 Local governments in Taiwan | Data envelopment analysis (DEA) model; Sharpe ratio. | Employment Accumulation of fixed assets | Real disposable income per capita Unemployment rate Volume of waste clearance Air pollution |
Asatryan and De Witte [22] | 2003–2011; German State of Bavaria | Fully non-parametric approach | Per capita expenditure | Pupil population Child population Elderly patient population Green and recreational areasEmployees paying social security |
Chang et al. [23] | 1990–2014; 31 OECD countries | Group-mean dynamic common correlated estimator (DCCE) panel regression Panel cointegration Vector-error-correction model (VECM) | Corruption, political ideology Real per capita GDP FDI Oil prices Electricity regulation Gas regulation | Energy intensity |
Seo et al. [24] | 2015–2016; 42 central administrative agencies in the Republic of Korea | Data envelopment analysis (DEA) | IT budget Number of employees | Number of policies for the adoption of Government 3.0 Number of open public data (API) Number of public services that can be applied for online |
Alonso and Andrews [25] | 2002–2008; local governments in the United Kingdom | Dynamic panel data model | Total per capita service expenditure, excluding expenditure on central administration. | Fiscal decentralization Fiscal deprivation Number of pupils attending the General Certificate of Secondary Education examination Older people being helped to live at home Waste management |
Chen and Paudel [26] | 2004–2017; 30 provinces in China | Malmquist–Luenberger index Dynamic panel model | Number of people employed by government Provincial-owned economic capital stock Annual financial expenditure. | GDP per capita Unemployment rate Consumer price index Ratio of middle school teachers to students Density of transportation infrastructure Number of hospital beds per capita Number of cases of corruption per 10,000 people Rate of labor dispute settlement |
Pacheco et al. [27] | 2008–2018; 324 Chilean municipalities | Parametric models and panel data | Expenditure on personnel Consumer goods and services Expenditure on education Expenditure on health Transfers to health services and centres Transfers to public education schools Municipality population Distance to the regional capital | Rural and urban municipal education establishments; Enrolment in municipal education establishments Health facilities Maintained green areas; Cleaning services, waste collection and landfill services Drinking water coverage Social organizations |
Variable | Notation | Definition | Source |
---|---|---|---|
Dependent variables | |||
Interaction with public authorities through the internet | EINTER | Individuals that used the internet for interaction with public authorities (last 12 months). The interaction refers to the use of at least one of the following services: (i) obtaining information from public authorities’ websites; (ii) downloading official forms; (iii) submitting completed forms. In percentage of total individuals | Eurostat |
Obtaining information from web sites of public authorities | EINFO | Individuals that obtained information from public authorities’ websites (last 12 months). In percentage of total individuals | |
Downloading official forms from the internet | EDOWNL | Individuals that downloaded official forms from public authorities’ websites and/or portals (last 12 months). In percentage of total individuals | |
Submitting completed forms through the internet | EFORMS | Individuals that submitted official forms using public authorities’ websites and/or portals (last 12 months). In percentage of total individuals | |
Independent variables (main regressor and control variables) | |||
Education | EDI | Education index, as a component of the Human Development Index (HDI). Calculated as a simple geometric average of the mean years of schooling and the expected years of schooling (Klugman, 2011). In points | United Nations Development Program (UNDP) |
Internet use | INTUSE | Internet use by individuals. Percentage of total population | Eurostat |
Economic development | GDPC | Real gross domestic product per capita. In Euros | |
Urbanization | URB | Population living in urban areas. In percentage of total population | |
Government effectiveness | GOVEFF | Perceptions of the quality of public services, the quality of the civil service and the degree of its independence from political pressures, the quality of policy formulation and implementation, and the credibility of the government’s commitment to such policies. In points | World Governance Indicators, World Bank |
Statistics | EINTER | EINFO | EDOWNL | EFORMS | EDI | INTUSE | GDPC | URB | GOVEFF |
---|---|---|---|---|---|---|---|---|---|
Mean | 46.782 | 41.720 | 29.250 | 27.550 | 0.841 | 76.655 | 25,486.600 | 71.737 | 1.092 |
Median | 47.940 | 42.360 | 28.050 | 24.210 | 0.843 | 79.260 | 20,770.000 | 69.565 | 1.065 |
Max | 91.670 | 89.510 | 73.700 | 76.590 | 0.943 | 97.850 | 86,330.000 | 98.041 | 2.241 |
Min | 4.930 | 4.300 | 2.750 | 1.890 | 0.688 | 36.600 | 4970.000 | 52.209 | −0.372 |
Standard deviation | 19.940 | 18.599 | 14.185 | 17.910 | 0.055 | 13.637 | 16,965.000 | 12.264 | 0.578 |
Skewness | 0.151 | 0.320 | 0.474 | 0.890 | −0.114 | −0.592 | 1.509 | 0.257 | −0.189 |
Kurtosis | 2.368 | 2.750 | 2.780 | 3.085 | 2.093 | 2.814 | 5.860 | 2.146 | 2.339 |
Jarque–Bera | 6.320 | 6.064 | 12.210 | 40.868 | 11.266 | 18.463 | 222.542 | 12.795 | 7.465 |
Probability | 0.042 | 0.048 | 0.002 | 0.000 | 0.004 | 0.000 | 0.000 | 0.002 | 0.024 |
Variables-Model | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Dependent variable | EINTER | EINFO | EDOWNL | EFORMS | ||||
EINTER—1 lag | 1.102 * | 0.985 * | -- | -- | -- | -- | -- | -- |
EINFO—1 lag | -- | -- | 0.992 * | 0.992 * | -- | -- | -- | -- |
EDOWNL—1 lag | -- | -- | -- | -- | 0.979 * | 0.928 * | -- | -- |
EFORMS—1 lag | -- | -- | -- | -- | -- | -- | 0.943 * | 0.909 * |
EDI | 0.282 *** | 0.150 *** | 0.385 *** | 0.202 *** | 0.393 ** | 0.202 | 0.368 | 0.185 |
INTUSE | −0.336 *** | −0.259 *** | −0.345 *** | −0.239 ** | −0.441 * | −0.305 * | −0.199 | −0.117 |
URB | 0.065 | 0.083 *** | 0.08 | 0.104 *** | 0.113 ** | 0.133 * | 0.113 ** | 0.153 ** |
GDPC | 0.004 | −0.029 ** | 0.006 | −0.043 *** | 0.037 | 0.006 | 0.009 | −0.051 *** |
GOVEFF | -- | 0.070 ** | -- | 0.085 | -- | 0.084 ** | -- | 0.133 * |
Constant | 1.171 | 1.175 ** | 1.237 ** | 1.494 * | 1.246 ** | 0.991 * | 0.617 | 0.731 |
Observations | 284 | 284 | 282 | 282 | 282 | 282 | 282 | 282 |
AR(2) | 0.211 | 0.184 | 0.175 | 0.149 | 0.089 | 0.086 | 0.861 | 0.865 |
Sargan–Hansen statistic | 0.166 | 0.313 | 0.090 | 0.150 | 0.245 | 0.396 | 0.51 | 0.745 |
Variables-Model | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|
Dependent variable | EINTER | EINFO | EDOWNL | EFORMS | ||||
EINTER—1 lag | 0.658 * | 0.974 * | -- | -- | -- | -- | -- | -- |
EINFO—1 lag | -- | -- | 0.589 | 1.000 * | -- | -- | -- | -- |
EDOWNL—1 lag | -- | -- | -- | -- | 0.931 * | 0.905 * | -- | -- |
EFORMS—1 lag | -- | -- | -- | -- | -- | -- | 0.928 * | 0.912 * |
EDI | 0.157 | 0.163 ** | −0.152 | 0.191 | 0.416 ** | 0.245 | 0.377 | 0.22 |
INTUSE | 0.441 | −0.231 | 0.554 | −0.317 ** | −0.376 ** | −0.261 ** | −0.179 | −0.145 |
URB | 0.061 | 0.091 *** | 0.06 | 0.089 | 0.104 | 0.144 * | 0.114 *** | 0.153 ** |
GDPC | −0.007 | −0.030 ** | −0.061 | −0.040 | 0.048 | 0.011 | 0.009 | −0.045 |
GOVEFF | -- | 0.067 ** | -- | 0.069 | -- | 0.081 *** | -- | 0.212 ** |
Constant | −0.719 | 1.077 ** | 0.852 | 1.454 * | 1.063 *** | 0.787 *** | 0.585 | 0.781 *** |
Observations | 284 | 284 | 282 | 282 | 282 | 282 | 282 | 282 |
AR(2) | 0.232 | 0.171 | 0.277 | 0.137 | 0.101 | 0.088 | 0.859 | 0.864 |
Sargan–Hansen statistic | 0.368 | 0.345 | 0.125 | 0.182 | 0.327 | 0.456 | 0.604 | 0.780 |
Convergence steps | 34 | 22 | 65 | 27 | 33 | 26 | 17 | 17 |
EINTER | EINFO | EFORMS | EDOWNL | EDI | INTUSE | GDPC | URB | GOVEFF | |
---|---|---|---|---|---|---|---|---|---|
Level | |||||||||
Levin, Lin, and Chu t | 8.35 | 6.89 | 7.79 | 5.67 | −6.41 | 8.64 | 6.01 | 1.03 | −1.69 |
ADF—Fisher Chi-square | 3.90 | 7.46 | 5.58 | 9.22 | 125.15 | 6.03 | 11.52 | 40.13 | 62.42 |
PP—Fisher chi-square | 2.13 | 5.30 | 1.81 | 5.01 | 252.51 | 3.01 | 21.75 | 37.61 | 69.03 |
First difference | |||||||||
Levin, Lin, and Chu t | −11.47 | −13.84 | −10.04 | −11.76 | −8.99 | −6.83 | −7.868 | −0.59 | −11.59 |
ADF—Fisher chi-square | 188.66 | 218.09 | 162.36 | 205.70 | 149.75 | 119.56 | 122.48 | 115.46 | 183.56 |
PP—Fisher chi-square | 322.45 | 379.82 | 260.70 | 360.04 | 210.38 | 174.80 | 237.85 | 155.46 | 298.52 |
EINTER | EINFO | EDOWNL | EFORMS | EDI | INTUSE | URB | GDPC | GOVEFF | |
---|---|---|---|---|---|---|---|---|---|
EINTER | -- | 0.576 | 4.645 * | 3.500 ** | 1.587 | 0.083 | 0.348 | 0.487 | 2.337 |
EINFO | 1.922 | -- | 3.958 ** | 4.966 * | 2.731 | 0.068 | 0.037 | 0.195 | 1.662 |
EDOWNL | 0.929 * | 7.970 * | -- | 4.573 ** | 1.276 | 1.883 | 0.080 | 1.585 | 0.984 |
EFORMS | 6.280 * | 4.976 * | 1.711 | -- | 1.811 | 0.672 | 1.019 | 1.456 | 1.332 |
EDI | 0.366 | 0.612 | 1.626 | 0.809 | -- | 0.808 | 1.287 | 0.996 | 1.901 |
INTUSE | 6.987 | 4.172 | 1.871 | 1.148 | 0.831 | -- | 0.189 | 1.016 * | 0.299 |
URB | 0.642 | 1.428 | 1.738 | 0.847 | 0.836 | 0.281 | -- | 1.777 | 1.805 |
GDPC | 5.855 * | 2.934 | 3.071 ** | 1.965 | 3.119 ** | 0.175 | 1.552 | -- | 0.187 |
GOVEFF | 49.481 * | 40.759 * | 3.081 ** | 0.844 | 1.848 | 0.388 | 3.589 ** | 2.167 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horobeț, A.L.; Mnohoghitnei, I.; Zlatea, E.M.L.; Smedoiu-Popoviciu, A. Determinants of E-Government Use in the European Union: An Empirical Analysis. Societies 2023, 13, 150. https://doi.org/10.3390/soc13060150
Horobeț AL, Mnohoghitnei I, Zlatea EML, Smedoiu-Popoviciu A. Determinants of E-Government Use in the European Union: An Empirical Analysis. Societies. 2023; 13(6):150. https://doi.org/10.3390/soc13060150
Chicago/Turabian StyleHorobeț, Alexandra Lavinia, Irina Mnohoghitnei, Emanuela Marinela Luminița Zlatea, and Alexandra Smedoiu-Popoviciu. 2023. "Determinants of E-Government Use in the European Union: An Empirical Analysis" Societies 13, no. 6: 150. https://doi.org/10.3390/soc13060150