Associations between Testing and Game Performance in Ice Hockey: A Scoping Review
Abstract
:1. Introduction
2. Objectives
3. Materials and Methods
3.1. Identifying the Research Question
3.2. Identifying Relevant Studies
3.3. Study Selection
3.4. Charting the Data
3.5. Collating, Summarizing and Reporting the Results
4. Results
4.1. Descriptive Statistics
4.2. Type of Testing: Off-Ice and On-Ice Protocols
4.3. Performance Markers in Game Situations
4.4. Strength of Associations between Testing and Performance Markers
4.4.1. Off-Ice Testing and Performance Markers
4.4.2. On-Ice Testing and Performance Markers
5. Discussion
5.1. Testing Protocols and Their Associations with Performance
5.2. Objective 2: Research Gaps and Future Research
5.3. Strengths, Limitations, and Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Ice Hockey Federation. IIHF Guide and Record Book, 10th Edition: Where Countries Come to Play; IIHF: Zurich, Switzerland, 2020; p. 683. [Google Scholar]
- Montgomery, D.L. Physiology of ice hockey. Sports Med. 1988, 5, 99–126. [Google Scholar] [CrossRef]
- Cox, M.H.; Miles, D.S.; Verde, T.J.; Rhodes, E.C. Applied physiology of ice hockey. Sports Med. 1995, 19, 184–201. [Google Scholar] [CrossRef] [PubMed]
- Bracko, M.R. On-ice performance characteristics of elite and non-elite women’s ice hockey players. J. Strength Cond. Res. 2001, 15, 42–47. [Google Scholar] [CrossRef]
- Burr, J.F.; Jamnik, R.K.; Baker, J.; Macpherson, A.; Gledhill, N.; McGuire, E.J. Relationship of physical fitness test results and hockey playing potential in elite-level ice hockey players. J. Strength Cond. Res. 2008, 22, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R. NSCA’s Guide to Program Design; Human Kinetics: Champaign, IL, USA, 2012; p. 3. [Google Scholar]
- Twist, P.; Rhodes, T. Exercise physiology: The bioenergetic and physiological demands of ice hockey. Strength Cond. J. 1993, 15, 68–70. [Google Scholar] [CrossRef]
- Parenteau-G, E.; Gaudreault, N.; Chambers, S.; Boisvert, C.; Grenier, A.; Gagné, G.; Balg, F. Functional movement screen test: A reliable screening test for young elite ice hockey players. Phys. Ther. Sport 2014, 15, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Hoff, J.; Kemi, O.J.; Helgerud, J. Strength and endurance differences between elite and junior elite ice hockey players. The importance of allometric scaling. Int. J. Sports Med. 2005, 26, 537–541. [Google Scholar] [CrossRef]
- Novák, D.; Lipinska, P.; Roczniok, R.; Spieszny, M.; Stastny, P. Off-ice agility provide motor transfer to on-ice skating performance and agility in adolescent ice hockey players. J. Sports Sci. Med. 2019, 18, 680. [Google Scholar]
- Young, W.B.; Dawson, B.; Henry, G.J. Agility and change-of-direction speed are independent skills: Implications for training for agility in invasion sports. Int. J. Sports Sci. Coach. 2015, 10, 159–169. [Google Scholar] [CrossRef]
- Cooper, D.; Gordon, B. Tactical Decision-Making in Sport: How Coaches Can Help Athletes to Make Better In-game Decisions; Routledge: New York, NY, USA, 2020. [Google Scholar]
- Guenter, R.W.; Dunn, J.G.; Holt, N.L. Talent identification in youth ice hockey: Exploring “intangible” player characteristics. Sport Psychol. 2019, 33, 323–333. [Google Scholar] [CrossRef]
- Quinney, H.A.; Dewart, R.; Game, A.; Snydmiller, G.; Warburton, D.; Bell, G. A 26-year physiological description of a National Hockey League team. Appl. Physiol. Nutr. Metab. 2008, 33, 753–760. [Google Scholar] [CrossRef]
- Cordingley, D.M.; Sirant, L.; MacDonald, P.B.; Leiter, J.R. Three-year longitudinal fitness tracking in top-level competitive youth ice hockey players. J. Strength Cond. Res. 2019, 33, 2909–2912. [Google Scholar] [CrossRef]
- Vigh-Larsen, J.F.; Haverinen, M.T.; Panduro, J.; Ermidis, G.; Andersen, T.B.; Overgaard, K.; Krustrup, P.; Parkkari, J.; Avela, J.; Kyröläinen, H.; et al. On-ice and off-ice fitness profiles of elite and U20 male ice hockey players of two different national standards. J. Strength Cond. Res. 2020, 34, 3369–3376. [Google Scholar] [CrossRef]
- Girdauskas, G.; Girdauskienė, B.; Kazakevičius, R. The influence of different training programs on the development of explosive force of ice hockey players aged 15–16 years. Educ. Phys. Train. Sport. 2007, 65, 10–15. [Google Scholar]
- Lagrange, S.; Ferland, P.M.; Leone, M.; Comtois, A.S. Contrast training generates post-activation potentiation and improves repeated sprint ability in elite ice hockey players. Int. J. Exerc. Sci. 2020, 13, 183. [Google Scholar] [PubMed]
- Nightingale, S.C. A strength and conditioning approach for ice hockey. Strength Cond. J. 2014, 36, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Allisse, M.; Bui, H.T.; Desjardins, P.; Léger, L.; Comtois, A.S.; Leone, M. Assessment of On-Ice Oxygen Cost of Skating Performance in Elite Youth Ice Hockey Players. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.J.; Fitzgerald, J.S.; Dietz, C.C.; Ziegler, K.S.; Ingraham, S.J.; Baker, S.E.; Snyder, E.M. Aerobic capacity is associated with improved repeated shift performance in hockey. J. Strength Cond. Res. 2015, 29, 1465–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, G.; Brunelle, J.F.; Trudeau, F.; Lemoyne, J. Measuring ice hockey skills in a repeated measures testing context: The effects of fatigue on skating efficiency, passing, agility, and shooting. Sport J. 2018, 21, 1–16. [Google Scholar]
- Jackson, J.; Snydmiller, G.; Game, A.; Gervais, P.; Bell, G. Investigation of positional differences in fitness of male university ice hockey players and the frequency, time spent and heart rate of movement patterns during competition. Int. J. Kin. Sports Sci. 2017, 5, 6–15. [Google Scholar] [CrossRef]
- Lachaume, C.M.; Trudeau, F.; Lemoyne, J. Energy expenditure by elite midget male ice hockey players in small-sided games. Int. J. Sports Sci. Coach. 2017, 12, 504–513. [Google Scholar] [CrossRef]
- Smart, D.; Hopkins, W.G.; Quarrie, K.L.; Gill, N. The relationship between physical fitness and game behaviours in rugby union players. Eur. J. Sport Sci. 2014, 14 (Suppl. 1), S8–S17. [Google Scholar] [CrossRef] [PubMed]
- Sporis, G.; Vucetic, V.; Jovanovic, M.; Jukic, I.; Omrcen, D. Reliability and factorial validity of flexibility tests for team sports. J. Strength Cond. Res. 2011, 25, 1168–1176. [Google Scholar] [CrossRef] [Green Version]
- Nightingale, S.C.; Miller, S.; Turner, A. The usefulness and reliability of fitness testing protocols for ice hockey players: A literature review. J. Strength Cond. Res. 2013, 27, 1742–1748. [Google Scholar] [CrossRef]
- Prokop, N.W.; Reid, R.E.R.; Andersen, R.E. Seasonal changes in whole body and regional body composition profiles of elite collegiate ice-hockey players. J. Strength Cond. Res. 2015, 30, 684–692. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef] [PubMed]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO framework to improve searching PubMed. for clinical questions. BMC Med. Inform. Decis. 2007, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. The Effect Size. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988; pp. 77–83. [Google Scholar]
- Boland, M.; Delude, K.; Miele, E.M. Relationship between physiological off-ice testing, on-ice skating, and game performance in division I female ice hockey players. J. Strength Cond. Res. 2019, 33, 1619–1628. [Google Scholar] [CrossRef]
- Roczniok, R.; Stanula, A.; Maszczyk, A.; Mostowik, A.; Kowalczyk, M.; Fidos-Czuba, O.; Zając, A. Physiological, physical and on-ice performance criteria for selection of elite ice hockey teams. Biol. Sport. 2016, 33, 43. [Google Scholar] [CrossRef] [PubMed]
- Roczniok, R.; Maszczyk, A.; Stanula, A.; Czuba, M.; Pietraszewski, P.; Kantyka, J.; Starzyński, M. Physiological and physical profiles and on-ice performance approach to predict talent in male youth ice hockey players during draft to hockey team. Isokinet. Exerc. Sci. 2013, 21, 121–127. [Google Scholar] [CrossRef]
- Stanula, A.J.; Roczniok, R.K.; Gabrys, T.T.; Szmatlan-Gabrys, U.B.; Ozimek, M.J. Relationships of physical fitness test results and player performance indicators in national-level ice hockey players. Proc. Int. Sci. Conf. 2018, 4, 264–273. [Google Scholar] [CrossRef]
- Vigh-Larsen, J.F.; Beck, J.H.; Daasbjerg, A.; Knudsen, C.B.; Kvorning, T.; Overgaard, K.; Andersen, K.; Mohr, M. Fitness characteristics of elite and subelite male ice hockey players: A cross-sectional study. J. Strength Cond. Res. 2019, 33, 2352–2360. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.; Grau, S. Physical Performance and the Relationship to Game Performance in Elite Adolescent Ice Hockey. Int. J. Strength Cond. 2020, 1. [Google Scholar] [CrossRef]
- Burr, J.F.; Jamnik, V.K.; Dogra, S.; Gledhill, N. Evaluation of jump protocols to assess leg power and predict hockey playing potential. J. Strength Cond. Res. 2007, 21, 1139–1145. [Google Scholar]
- Delisle-Houde, P.; Chiarlitti, N.A.; Reid, R.E.; Andersen, R.E. Relationship between physiologic tests, body composition changes, and on-ice playing time in Canadian collegiate hockey players. J. Strength Cond. Res. 2018, 32, 1297–1302. [Google Scholar] [CrossRef]
- Green, M.R.; Pivarnik, J.M.; Carrier, D.P.; Womack, C.J. Relationship between physiological profiles and on-ice performance of a National Collegiate Athletic Association Division I hockey team. J. Strength Cond. Res. 2006, 20, 43. [Google Scholar]
- Kniffin, K.M.; Howley, T.; Bardreau, C. Putting muscle into sports analytics: Strength, conditioning, and ice hockey performance. J. Strength Cond. Res. 2017, 31, 3253–3259. [Google Scholar] [CrossRef] [PubMed]
- Tarter, B.C.; Kirisci, L.; Tarter, R.E.; Weatherbee, S.; Jamnik, V.; McGuire, E.J.; Gledhill, N. Use of aggregate fitness indicators to predict transition into the National Hockey League. J. Strength Cond. Res. 2009, 23, 1828–1832. [Google Scholar] [CrossRef]
- Vescovi, J.D.; Murray, T.M.; Fiala, K.A.; VanHeest, J.L. Off-ice performance and draft status of elite ice hockey players. Int. J. Sports Physiol. Perform. 2006, 1, 207–221. [Google Scholar] [CrossRef]
- Upjohn, T.; Turcotte, R.; Pearsall, D.J.; Loh, J. Three-dimensional kinematics of the lower limbs during forward ice hockey skating. Sports Biomech. 2008, 7, 206–221. [Google Scholar] [CrossRef] [PubMed]
- Bracko, M.R. On-ice performance characteristics of elite and non-elite female ice hockey players. Med. Sci. Sports Exerc. 1998, 30, 273. [Google Scholar] [CrossRef]
- Peyer, K.L.; Pivarnik, J.M.; Eisenmann, J.C.; Vorkapich, M. Physiological characteristics of National Collegiate Athletic Association Division I ice hockey players and their relation to game performance. J. Strength Cond. Res. 2011, 25, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Mascaro, T.; Seaver, B.L.; Swanson, L. Prediction of skating speed with off-ice testing in professional hockey players. J. Orthop. Sports Phys. Ther. 1992, 15, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Nandakumar, N.; Jensen, S.T. Historical perspectives and current directions in hockey analytics. Annu. Rev. Stat. Appl. 2019, 6, 19–36. [Google Scholar] [CrossRef]
- Bravo, A.; Karba, T.; Mcwhirter, S.; Nayden, B. Analysis of Individual Player Performances and Their Effect on Winning in College Soccer. SMU Data Sci. Rev. 2021, 5, 8. [Google Scholar]
- Perez, J.; Guilhem, G.; et Brocherie, F. Reliability of the force-velocity-power variables during ice hockey sprint acceleration. Sports Biomech. 2019, 1–15. [Google Scholar] [CrossRef]
- Jackson, J.; Snydmiller, G.; Game, A.; Gervais, P.; Bell, G. Movement characteristics and heart rate profiles displayed by female university ice hockey players. Int. J. Kin. Sports Sci. 2016, 4, 43–54. [Google Scholar]
- Douglas, A.; Rotondi, M.A.; Baker, J.; Jamnik, V.K.; Macpherson, A.K. On-Ice Physical Demands of World-Class Women’s Ice Hockey: From Training to Competition. Int. J. Sports Physiol. 2019, 14, 1227–1232. [Google Scholar] [CrossRef]
- Krajňák, J. Structure and performance-related changes in puberty in a group of ice hockey players. Studia Sport. 2020, 14, 68–75. [Google Scholar] [CrossRef]
- Douglas, A.S.; Kennedy, C.R. Tracking in-match movement demands using local positioning system in world-class men’s ice hockey. J. Strength Cond. Res. 2020, 34, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.S. The Applied Use of Wearable Technology in Elite Female Ice Hockey. Ph.D. Thesis, York University, Toronto, ON, Canada, 2020. Available online: http://130.63.180.190/xmlui/bitstream/handle/10315/37434/Douglas_Adam_S_2019_PhD.pdf?sequence=2&isAllowed=y (accessed on 15 May 2021).
- Vleugels, R.; Van Herbruggen, B.; Fontaine, J.; De Poorter, E. Ultra-Wideband Indoor Positioning and IMU-Based Activity Recognition for Ice Hockey Analytics. Sensors 2021, 21, 4650. [Google Scholar] [CrossRef]
- Budarick, A.R.; Shell, J.R.; Robbins, S.M.K.; Wu, T.; Renaud, P.J.; Pearsall, D.J. Ice hockey skating sprints: Run to glide mechanics of high calibre male and female athletes. Sports Biomech. 2020, 19, 601–617. [Google Scholar] [CrossRef]
- Nadeau, L.; Godbout, P.; Richard, J.F. Assessment of ice hockey performance in real-game conditions. Eur. J. Sport Sci. 2008, 8, 379–388. [Google Scholar] [CrossRef]
- Tóth, L.; Géczi, G.; Sipos, K.; Bognár, J. Psychological characteristics of different age-groups of Hungarian national ice hockey players. Kalokagathia 2010, 48, 2–3. [Google Scholar]
References | Population under Study * (n) | Off-Ice Tests (Variables) | Performance Markers | Analyses | Strength of Association |
---|---|---|---|---|---|
Hoff et al., 2005 [9] | Elite (n = 18) Elite junior (n = 21) | 1-RM squat 1-RM bench press CMJ 40 m sprint | Talent identification | T-test | Elite > Junior |
Peterson et al., 2015 [21] | Division I (n = 24), Junior (n = 10) Div. III (n = 11) | Squat jump Wingate 30 s Grip strength Skating test-treadmill | Talent identification | ANOVA | DI > D III Junior > D III |
Boland et al., 2019 [33] | Female Collegiate (n = 20) | Deadlift Max Reps (RM) Bench press 3–5 RM Counter Movement Jump (CMJ) Wingate 30 s | Differential +/− Points Goals Assists Shots on goal | Correlation | None Moderate None Moderate Moderate |
Roczniok et al., 2016 [34] | Elite (n = 20) Sub elite (n = 22) | Wingate 30 s Ramp ergocycle test | Talent identification | T-test | Elite > sub |
Roczniok et al., 2013 [35] | Elite (n = 22), Sub elite (n = 38) Secondary school (n = 50) | Wingate 30 s Ramp ergocycle test | Talent identification | ANOVA | Elite > Sec Sub > Sec |
Stanula et al., 2018 [36] | National team (n = 20) | CMJ Wingate 30 s Incremental test on ergocycle | +/− Differential | Correlation | None |
Vigh-Larsen et al., 2019 [37] | Elite (n = 164) Sub elite (n = 132) | CMJ | Talent identification | T-test | Elite > Sub |
Williams & Grau, 2020 [38] | Adolescent high school (n = 12) | Standing long jump Single leg lateral jump | Point shares | Correlation | None |
Burr et al., 2007 [39] | Junior NHL draft (n = 107) | Squat jump CMJ | NHL draft rank | Correlation | Moderate |
Delisle-Houde et al., 2018 [40] | Collegiate (n = 21) | Standing long jump CMJ Wingate 30 s 20 m shuttle run Léger | Ice time Shift length Shot differential Special teams Playing time | Correlation | Moderate Moderate Moderate Moderate None |
Green et al., 2006 [41] | Collegiate (n = 29) | Incremental treadmill test | Scoring chances Playing time | Correlation | Moderate Moderate |
Kniffin et al., 2017 [42] | Collegiate (n = 336) | CMJ Max repetitions bench press | Games played Points | Correlation | Weak Moderate |
Tarter et al., 2009 [43] | Junior NHL draft (n = 345) | Grip strength Max repetitions bench press Push strength Max repetitions push-ups CMJ Standing long jump Curl ups Wingate 30 s Incremental test on ergometer | Number of NHL games played | Factor analysis | 35% chance to make the NHL |
Vescovi et al., 2006 [44] | Junior NHL draft (n = 250) | Max repetitions push-ups Push strength Pull strength Standing long jump CMJ Sit and reach Wingate 30 s | NHL draft rank | ANOVA MANCOVA | None |
Upjohn et al., 2008 [45] | McGill varsity team players and other adult hockey players (n = 10) | Treadmill grade Treadmill speed Stride rate Vertical jump Left leg long jump Right leg long jump | Talent identification | T-test | Low-calibre < High-calibre for long jump and treadmill speed |
Peyer et al., 2011 [47] | Collegiate (n = 24) | Multi-stage treadmill Max repetitions leg press Max repetitions bench press Max repetitions push-ups Max repetitions chin-ups 12 × 110 | Differential +/− | Correlation | Moderate |
References | Population under Study * (n) | On-Ice Tests (Variables) | Performance Markers | Analyses | Strength of Association |
---|---|---|---|---|---|
Peterson et al., 2015 [21] | Division I (n = 24), Elite junior (n = 10) Division III (n = 11) | Repeated shift test | Talent identification | ANOVA | DI > DIII Elite jr >D III |
Boland et al., 2019 [33] | Female Collegiate players (n = 20) | Repeated-Skate-Sprint (RSS) Test | Differential Points Goals Assists Shots on goal | Correlation | None None None Moderate None |
Roczniok et al., 2016 [34] | Elite (n = 20) Sub elite (n = 22) | 30 m sprint forward 30 m sprint backwards 6 × 9 m tops 6 × 9 m turns 6 × 30 m | Talent identification | T-test | Elite > Sub |
Roczniok et al., 2013 [35] | Elite (n = 22), Sub elite (n = 38) Secondary school (n = 50) | 30 m sprint forward 30 m sprint backwards 6 × 9 m tops 6 × 9 m turns 6 × 30 m | Talent identification | ANOVA | None |
Stanula et al., 2018 [36] | National team players (n = 20) | RSS test | Differential +/− | Correlation | Moderate |
Vigh-Larsen et al., 2019 [37] | Elite (n = 164) Sub elite (n = 132) | 5-10-5 33.15 m sprint Yo-Yo Test | Talent identification | T-test | Elite > Sub |
Williams & Grau, 2020 [38] | Adolescent high school (n = 12) | 15 m sprint Cornering S test | Point shares | Correlation | None |
Bracko, 1998 [46] | National team Female (n = 8) Sub elite female (n = 15) | Cornering S test 6.10 m sprint 47.85 m sprint RSS Test | Talent identification | T-test | Nat Team> Sub |
Peyer et al., 2011 [47] | Collegiate (n = 24) | 44 m sprint test Short-lighting test Lap sprint test | Differential | Correlation | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huard Pelletier, V.; Glaude-Roy, J.; Daigle, A.-P.; Brunelle, J.-F.; Bissonnette, A.; Lemoyne, J. Associations between Testing and Game Performance in Ice Hockey: A Scoping Review. Sports 2021, 9, 117. https://doi.org/10.3390/sports9090117
Huard Pelletier V, Glaude-Roy J, Daigle A-P, Brunelle J-F, Bissonnette A, Lemoyne J. Associations between Testing and Game Performance in Ice Hockey: A Scoping Review. Sports. 2021; 9(9):117. https://doi.org/10.3390/sports9090117
Chicago/Turabian StyleHuard Pelletier, Vincent, Julien Glaude-Roy, André-Philipe Daigle, Jean-François Brunelle, Antoine Bissonnette, and Jean Lemoyne. 2021. "Associations between Testing and Game Performance in Ice Hockey: A Scoping Review" Sports 9, no. 9: 117. https://doi.org/10.3390/sports9090117
APA StyleHuard Pelletier, V., Glaude-Roy, J., Daigle, A.-P., Brunelle, J.-F., Bissonnette, A., & Lemoyne, J. (2021). Associations between Testing and Game Performance in Ice Hockey: A Scoping Review. Sports, 9(9), 117. https://doi.org/10.3390/sports9090117