The Effect of Inspiratory Muscle Warm-Up on VO2 Kinetics during Submaximal Rowing
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Maximal Inspiratory Pressure
2.3. Incremental Exercise Testing
2.4. Submaximal Intensity Rowing Test at 90% PVO2max Intensity
2.5. Warm-Up Protocols
2.6. Modeling of VO2 Kinetics
- (1)
- Parameters A1, A2, TD1, TD2, τ1 and τ2 could not be negative
- (2)
- τ1 ≥ 10 s
- (3)
- τ2 ≤ 300 s
- (4)
- τ2 ≥ 3 · τ1
- (5)
- 70 ≤ TD2 ≤ 180
2.7. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Secher, N.H. Physiological and biomechanical aspects of rowing. Sports Med. 1993, 15, 24–42. [Google Scholar] [CrossRef] [PubMed]
- Mador, M.J.; Acevedo, F.A. Effect of respiratory muscle fatigue on subsequent exercise performance. J. Appl. Phys. 1991, 70, 2059–2065. [Google Scholar] [CrossRef]
- Verges, S.; Sager, Y.; Erni, C.; Spengler, C.M. Expiratory muscle fatigue impairs exercise performance. Eur. J. Appl. Physiol. 2007, 101, 225–232. [Google Scholar] [CrossRef]
- Romer, L.M.; Polkey, M.I. Exercise-induced respiratory muscle fatigue: Implications for performance. J. Appl. Phys. 2008, 104, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Volianitis, S.; McConnell, A.K.; Jones, D.A. Assessment of maximum inspiratory pressure. Prior submaximal respiratory muscle activity (“warm-up”) enhances maximum inspiratory activity and attenuates the learning effect of repeated measurement. Respiration 2001, 68, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, J.A.; Romer, L.; Rodman, J.; Miller, J.; Smith, C. Consequences of exercise-induced respiratory muscle work. Respir. Physiol. Neurobiol. 2006, 151, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Babcock, M.A.; Pegelow, D.F.; Harms, C.A.; Dempsey, J.A. Effects of respiratory muscle unloading on exercise-induced diaphragm fatigue. J. Appl. Phys. 2002, 93, 201–206. [Google Scholar]
- Illi, S.K.; Held, U.; Frank, I.; Spengler, C.M. Effect of respiratory muscle training on exercise performance in healthy individuals: A systematic review and meta-analysis. Sports Med. 2012, 42, 707–724. [Google Scholar] [CrossRef]
- Lomax, M.; McConnell, A.K. The influence of prior activity (warm-up) and inspiratory muscle training upon between and within day reliability of maximal inspiratory pressure measurement. Respiration 2009, 78, 197–202. [Google Scholar] [CrossRef]
- Richard, P.; Billaut, F. Effects of inspiratory muscle warm-up on locomotor muscle oxygenation in elite speed skaters during 3000 m time trials. Eur. J. Appl. Physiol. 2019, 119, 191–200. [Google Scholar] [CrossRef]
- Barnes, K.R.; Ludge, A.R. Inspiratory Muscle Warm-up Improves 3,200-m Running Performance in Distance Runners. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.C.; Barstow, T.J.; Mcdonough, P.; Jones, A.M. Control of oxygen uptake during exercise. Med. Sci. Sport Exerc. 2008, 40, 462–474. [Google Scholar] [CrossRef] [PubMed]
- Whipp, B.J. The slow component of O2 uptake kinetics during heavy exercise. Med. Sci. Sport Exerc. 1994, 26, 1319–1326. [Google Scholar] [CrossRef]
- Barstow, T.J.; Mole, P.P. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. J. Appl. Phys. 1991, 71, 2099–2106. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.; Ribeiro, J.; Sousa, M.; Vilas-Boas, J.P.; Fernandes, R.J. Influence of Prior Exercise on VO2 Kinetics Subsequent Exhaustive Rowing Performance. PLoS ONE 2014, 9, e84208. [Google Scholar] [CrossRef]
- Barker, A.R.; Jones, A.M.; Armstrong, N. The influence of priming exercise on oxygen uptake, cardiac output, and muscle oxygenation kinetics during very heavy-intensity exercise in 9-to 13-yr-old boys. J. Appl. Phys. 2010, 109, 491–500. [Google Scholar] [CrossRef]
- Jones, A.M.; Burnley, M. Effect of exercise modality on VO2 kinetics. In Oxygen Uptake Kinetics in Sports, Exercise and Medicine; Jones, A.M., Poole, D.C., Eds.; Routledge, Taylor & Francis Books Lt.: Abingdon, UK, 2005; pp. 95–114. ISBN 0-415-30561-6. [Google Scholar]
- Poole, D.C.; Jones, A.M. Oxygen uptake kinetics. Compr. Physiol. 2012, 2, 933–996. [Google Scholar]
- Whipp, B.J.; Rossiter, H.B.; Ward, S.A. Exertional oxygen uptake kinetics: A stamen of stamina? Biochem. Soc. Trans. 2002, 30, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Burnley, M.; Jones, A.M. Oxygen uptake kinetics as a determinant of sports performance. Eur. J. Sport Sci. 2007, 7, 63–79. [Google Scholar] [CrossRef]
- Ingham, S.A.; Carter, H.; Whyte, G.; Doust, J.H. Comparison of the oxygen uptake kinetics of club and olympic champion rowers. Med. Sci. Sport Exerc. 2007, 39, 865–871. [Google Scholar] [CrossRef]
- Bailey, S.J.; Vanhatalo, A.; Wilkerson, D.P.; DiMenna, F.J.; Jones, A.M. Optimizing the “priming” effect: Influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe-intensity exercise tolerance. J. Appl. Phys. 2009, 107, 1743–1756. [Google Scholar] [CrossRef]
- Sahlin, K.; Sørensen, J.B.; Gladden, L.B.; Rossiter, H.B.; Pedersen, P.K. Prior heavy exercise eliminates VO2 slow component and reduces efficiency during submaximal exercise in humans. J. Physiol. 2005, 564, 765–773. [Google Scholar] [CrossRef]
- Fukuoka, Y.; Poole, D.C.; Barstow, T.J.; Kondo, N.; Nishiwaki, M.; Okushima, D.; Koga, S. Reduction of VO2 slow component by priming exercise: Novel mechanistic insights from time-resolved near-infrared spectroscopy. Physiol. Rep. 2015, 3, e12432. [Google Scholar] [CrossRef]
- Jones, A.M.; Burnley, M. Oxygen uptake kinetics: An underappreciated determinant of exercise performance. Int. J. Sports Physiol. Perform. 2009, 4, 524–532. [Google Scholar] [CrossRef] [PubMed]
- ATS/ERS. American Thoracic Society/ European Respiratory Society Statement on respiratory muscle testing. Am. J. Respir. Crit. Care. Med. 2002, 166, 518–624. [Google Scholar] [CrossRef] [PubMed]
- Arend, M.; Mäestu, J.; Kivastik, J.; Rämson, R.; Jürimäe, J. Effect of inspiratory muscle warm-up on submaximal rowing performance. J. Strength Cond. Res. 2015, 29, 213–218. [Google Scholar] [CrossRef]
- Jürimäe, J.; Mäestu, J.; Jürimäe, T.; Pihl, E. Relationship between rowing performance and different metabolic parameters on male rowers. Med. Sport 1999, 52, 119–126. [Google Scholar]
- Kolle, E.; Steene-Johannessen, J.; Andersen, L.B.; Anderssen, S.A. Objectively assessed physical activity and aerobic fitness in a population-based sample of Norwegian 9- and 15-year-old. Scan. J. Med. Sci. Sports 2012, 20, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Kolkhorst, F.W.; Rezende, R.S.; Levy, S.S.; Buono, M.J. Effects of sodium bicarbonate on VO2 kinetics during heavy exercise. Med. Sci. Sport Exerc. 2004, 36, 1895–1899. [Google Scholar] [CrossRef]
- Volianitis, S.; McConnell, A.K.; Koutedakis, Y.; Jones, D.A. The influence of prior activity upon inspiratory muscle strength in rowers and non-rowers. Int. J. Sports Med. 1999, 20, 542–547. [Google Scholar] [CrossRef]
- Roberts, C.L.; Wilkerson, D.P.; Jones, A.M. Pulmonary O2 uptake on-kinetics in rowing and cycle ergometer exercise. Respir. Physiol. Neurobiol. 2005, 146, 247–258. [Google Scholar] [CrossRef]
- Sousa, A.; Rodríguez, F.A.; Machado, L.; Vilas-Boas, J.P.; Fernandes, R.J. Exercise modality effect on oxygen uptake off-transient kinetics at maximal oxygen uptake intensity. Exp. Physiol. 2015, 100, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Byrne, N.M.; Hills, A.P.; Hunter, G.R.; Weinsier, R.L.; Schutz, Y. Metabolic equivalent: One size does not fit all. J. Appl. Phys. 2005, 99, 1112–1119. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.J.; Romer, L.M.; Kelly, J.; Wilkerson, D.P.; DiMenna, F.J.; Jones, A.M. Inspiratory muscle training enhances pulmonary O2 uptake kinetics and high-intensity exercise tolerance in humans. J. Appl. Phys. 2012, 109, 457–468. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.E.; McKeever, T.M.; Lobb, C.; Sherriff, T.; Gupta, L.; Hearson, G.; Martin, N.; Lindley, M.R.; Shaw, D.E. Respiratory muscle specific warm-up and elite swimming performance. Brit. J. Sport Med. 2014, 48, 789–791. [Google Scholar] [CrossRef]
- Markovitz, G.H.; Sayre, J.W.; Storer, T.W.; Cooper, C.B. On issues of confidence in determining the time constant for oxygen uptake kinetics. Brit. J. Sport Med. 2004, 38, 553–560. [Google Scholar] [CrossRef]
- Demarie, S.; Quaresima, V.; Ferrari, M.; Billat, V.; Sbriccoli, P.; Faina, M. Auxiliary muscles and slow component during rowing. Int. J. Sports Med. 2008, 29, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Koga, S.; Rossiter, H.B.; Heinonen, I.; Musch, T.I.; Poole, D.C. Dynamic heterogeneity of exercising muscle blood flow and O2 utilization. Med. Sci. Sport Exerc. 2014, 46, 860–876. [Google Scholar] [CrossRef] [PubMed]
- Barstow, T.J.; Jones, A.M.; Nguyen, P.H.; Casaburi, R. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics in heavy exercise. J. Appl. Phys. 1996, 81, 1642–1650. [Google Scholar] [CrossRef]
- Jones, A.M.; Wilkerson, D.P.; Vanhatalo, A.; Burnley, M. Influence of pacing strategy on O2 uptake and exercise tolerance. Scan. J. Med. Sci. Sports 2008, 18, 615–626. [Google Scholar] [CrossRef]
- Vanhatalo, A.; Poole, D.C.; DiMenna, F.J.; Bailey, S.J.; Jones, A.M. Muscle fiber recruitment and the slow component of O2 uptake: Constant work rate vs. all-out sprint exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R700–R707. [Google Scholar] [CrossRef]
- Reis, J.F.; Alves, F.B.; Bruno, P.M.; Vleck, V.; Millet, G.P. Oxygen uptake kinetics and middle distance swimming performance. J. Sci. Med. Sport 2012, 15, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Carter, H.; Jones, A.M.; Barstow, T.J.; Burnley, M.; Williams, C.A.; Doust, J.H. Oxygen uptake kinetics in treadmill running and cycle ergometry: A comparison. J. Appl. Phys. 2000, 89, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Barstow, T.J.; Jones, A.M.; Nguyen, P.H.; Casaburi, R. Influence of muscle fibre type and fitness on the oxygen uptake/power output slope during incremental exercise in humans. Exp. Physiol. 2000, 85, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Pringle, J.S.; Doust, J.H.; Carter, H.; Tolfrey, K.; Campbell, I.T.; Jones, A.M. Oxygen uptake kinetics during moderate, heavy and severe intensity “submaximal” exercise in humans: The influence of muscle fibre type and capillarisation. Eur. J. Sport Sci. 2003, 89, 289–300. [Google Scholar] [CrossRef]
- Legrand, R.; Prieur, F.; Marles, A.; Nourry, C.; Lazzari, S.; Blondel, N.; Mucci, P. Respiratory muscle oxygenation kinetics: Relationships with breathing pattern during exercise. Int. J. Sports Med. 2007, 28, 91–99. [Google Scholar] [CrossRef]
- Perrey, S.; Ferrari, M. Muscle Oximetry in Sports Science: A Systematic Review. Sports Med. 2018, 48, 597–616. [Google Scholar] [CrossRef]
- Kowalchuk, J.M.; Rossiter, H.B.; Ward, S.A.; Whipp, B.J. The effect of resistive breathing on leg muscle oxygenation using near-infrared spectroscopy during exercise in men. Exp. Physiol. 2002, 87, 601–611. [Google Scholar] [CrossRef]
- de Bisschop, C.; Beloka, S.; Groepenhoff, H.; van der Plas, M.N.; Overbeek, M.J.; Naeije, R.; Guenard, H. Is there competition for oxygen availability between respiratory and limb muscles? Respir. Physiol. Neurobiol. 2014, 196, 8–16. [Google Scholar] [CrossRef] [PubMed]
Subjects (n = 10) | |||
---|---|---|---|
Mean ± SD | Min | Max | |
Age (y) | 23.1 ± 3.8 | 20.0 | 26.0 |
Height (cm) | 188.1 ± 6.3 | 180.0 | 202.0 |
Body mass (kg) | 85.6 ± 6.6 | 70.5 | 92.0 |
Rowing experience (y) | 8.5 ± 3.2 | 4.5 | 12.0 |
PVO2max (W) | 328.7 ± 40.0 | 275.0 | 383.0 |
VO2max (mL·min−1·kg−1) | 50 ± 4.0 | 43.0 | 57.0 |
N | Test 1 | Test 2 | % Change | p | Effect Size (Cohen’s d) | |
---|---|---|---|---|---|---|
A0′ (L/min) | 10 | 0.26 ± 0.02 | 0.26 ± 0.02 | 0 | - | - |
τ1 (s) | 10 | 19.50 ± 5.80 | 19.26 ± 5.20 | −1.6% | 0.69 | 0.04 |
A1′ (L/min) | 10 | 4.30 ± 0.35 | 4.28 ± 0.42 | −0.5% | 0.75 | 0.05 |
TD2 (s) | 9 | 128.32 ± 35.16 | 125.52 ± 33.18 | −2.2% | 0.88 | 0.08 |
τ2 (s) | 9 | 105.56 ± 64.00 | 101.17 ± 61.51 | −4.2% | 0.83 | 0.07 |
A2′ (L/min) | 9 | 0.26 ± 0.16 | 0.28 ± 0.17 | 7.7% | 0.83 | 0.12 |
VO2 at 400 s (L/min) | 9 | 4.86 ± 0.13 | 4.84 ± 0.14 | -0.4% | 0.76 | 0.15 |
Test 1 | Test 2 | |||||||
---|---|---|---|---|---|---|---|---|
τ1 | τ2 | VO2 at 400 s | A1′ | τ1 | τ2 | VO2 at 400 s | A1′ | |
τ2 | 0.49 | 0.50 | ||||||
VO2 at 400 s | 0.78 * | 0.50 | 0.21 | 0.04 | ||||
A1′ | 0.85 ** | 0.34 | 0.91 ** | 0.33 | −0.08 | 0.92 ** | ||
A2′ | −0.09 | 0.40 | 0.28 | −0.14 | −0.53 | 0.29 | 0.15 | −0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arend, M.; Kivastik, J.; Talts, J.; Mäestu, J. The Effect of Inspiratory Muscle Warm-Up on VO2 Kinetics during Submaximal Rowing. Sports 2021, 9, 42. https://doi.org/10.3390/sports9030042
Arend M, Kivastik J, Talts J, Mäestu J. The Effect of Inspiratory Muscle Warm-Up on VO2 Kinetics during Submaximal Rowing. Sports. 2021; 9(3):42. https://doi.org/10.3390/sports9030042
Chicago/Turabian StyleArend, Mati, Jana Kivastik, Jaak Talts, and Jarek Mäestu. 2021. "The Effect of Inspiratory Muscle Warm-Up on VO2 Kinetics during Submaximal Rowing" Sports 9, no. 3: 42. https://doi.org/10.3390/sports9030042
APA StyleArend, M., Kivastik, J., Talts, J., & Mäestu, J. (2021). The Effect of Inspiratory Muscle Warm-Up on VO2 Kinetics during Submaximal Rowing. Sports, 9(3), 42. https://doi.org/10.3390/sports9030042