Association of Genetic Variances in ADRB1 and PPARGC1a with Two-Kilometre Running Time-Trial Performance in Australian Football League Players: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sample Collection and DNA Analysis
2.3. Endurance Testing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robertson, S.; Woods, C.; Gastin, P. Predicting higher selection in elite junior Australian Rules football: The influence of physical performance and anthropometric attributes. J. Sci. Med. Sport 2015, 18, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.T.; Raynor, A.J.; Bruce, L.; McDonald, Z.; Collier, N. Predicting playing status in junior Australian Football using physical and anthropometric parameters. J. Sci. Med. Sport 2015, 18, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Hart, N.H.; Nimphius, S.; Cochrane, J.L.; Newton, R.U. Leg mass characteristics of accurate and inaccurate kickers: An Australian football perspective. J. Sports Sci. 2013, 31, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Hart, N.H.; Nimphius, S.; Spiteri, T.; Cochrane, J.L.; Newton, R.U. Relationship between Leg Mass, Leg Composition and Foot Velocity on Kicking Accuracy in Australian Football. J. Sports Sci. Med. 2016, 15, 344–351. [Google Scholar] [PubMed]
- Hart, N.H.; Nimphius, S.; Spiteri, T.; Newton, R.U. Leg strength and lean mass symmetry influences kicking performance in Australian football. J. Sports Sci. Med. 2014, 13, 157–165. [Google Scholar]
- Hart, N.H.; Nimphius, S.; Weber, J.; Spiteri, T.; Rantalainen, T.; Dobbin, M.; Newton, R.U. Musculoskeletal Asymmetry in Football Athletes: A Product of Limb Function over Time. Med. Sci. Sports Exerc. 2016, 48, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Hart, N.H.; Spiteri, T.; Lockie, R.G.; Nimphius, S.; Newton, R.U. Detecting deficits in change of direction performance using the preplanned multidirectional Australian football league agility test. J. Strength Cond. Res. 2014, 28, 3552–3556. [Google Scholar] [CrossRef]
- AFL. Laws of Australian Football; Australian Football League: Melbourne, Australia, 2016. [Google Scholar]
- Colby, M.J.; Dawson, B.; Heasman, J.; Rogalski, B.; Rosenberg, M.; Lester, L.; Peeling, P. Preseason Workload Volume and High-Risk Periods for Noncontact Injury Across Multiple Australian Football League Seasons. J. Strength Cond. Res. 2017, 31, 1821–1829. [Google Scholar] [CrossRef]
- Kelly, S.J.; Watsford, M.L.; Rennie, M.J.; Spurrs, R.W.; Austin, D.; Pine, M.J. Match-play movement and metabolic power demands of elite youth, sub-elite and elite senior Australian footballers. PLoS ONE 2019, 14, e0212047. [Google Scholar] [CrossRef] [Green Version]
- Boyd, L.J.; Ball, K.; Aughey, R.J. Quantifying external load in Australian football matches and training using accelerometers. Int. J. Sports Physiol. Perform. 2013, 8, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Coutts, A.J.; Quinn, J.; Hocking, J.; Castagna, C.; Rampinini, E. Match running performance in elite Australian Rules Football. J. Sci. Med. Sport 2010, 13, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Dawson, B.; Hopkinson, R.; Appleby, B.; Stewart, G.; Roberts, C. Player movement patterns and game activities in the Australian Football League. J. Sci. Med. Sport 2004, 7, 278–291. [Google Scholar] [CrossRef]
- Gray, A.J.; Jenkins, D.G. Match analysis and the physiological demands of Australian football. Sports Med. 2010, 40, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Haycraft, J.A.Z.; Kovalchik, S.; Pyne, D.B.; Robertson, S. Physical characteristics of players within the Australian Football League participation pathways: A systematic review. Sports Med. Open 2017, 3, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veale, J.P.; Pearce, A.J.; Carlson, J.S. Player movement patterns in an elite junior Australian rules football team: An exploratory study. J. Sports Sci. Med. 2007, 6, 254–260. [Google Scholar] [PubMed]
- Wisbey, B.; Montgomery, P.G.; Pyne, D.B.; Rattray, B. Quantifying movement demands of AFL football using GPS tracking. J. Sci. Med. Sport 2010, 13, 531–536. [Google Scholar] [CrossRef]
- Drozdovska, S.B.; Dosenko, V.E.; Ahmetov, I.I.; Ilyin, V.N. The Association of Gene Polymorphisms with Athlete Status in Ukrainians. Biol. Sport 2013, 30, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Gineviciene, V.; Jakaitiene, A.; Tubelis, L.; Kucinskas, V. Variation in the ACE, PPARGC1A and PPARA genes in Lithuanian football players. Eur. J. Sport Sci. 2014, 14 (Suppl. 1), S289–S295. [Google Scholar] [CrossRef]
- Mustafina, L.J.; Naumov, V.A.; Cieszczyk, P.; Popov, D.V.; Lyubaeva, E.V.; Kostryukova, E.S.; Fedotovskaya, O.N.; Druzhevskaya, A.M.; Astratenkova, I.V.; Glotov, A.S.; et al. AGTR2 gene polymorphism is associated with muscle fibre composition, athletic status and aerobic performance. Exp. Physiol. 2014, 99, 1042–1052. [Google Scholar] [CrossRef]
- Puthucheary, Z.; Skipworth, J.R.; Rawal, J.; Loosemore, M.; Van Someren, K.; Montgomery, H.E. The ACE gene and human performance: 12 years on. Sports Med. 2011, 41, 433–448. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. ACTN3: More than Just a Gene for Speed. Front. Physiol. 2017, 8, 1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, N.; MacArthur, D.G.; Gulbin, J.P.; Hahn, A.G.; Beggs, A.H.; Easteal, S.; North, K. ACTN3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet. 2003, 73, 627–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Wu, H.; Tarr, P.T.; Zhang, C.Y.; Wu, Z.; Boss, O.; Michael, L.F.; Puigserver, P.; Isotani, E.; Olson, E.N.; et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002, 418, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.R. Pharmacogenetics of the human beta-adrenergic receptors. Pharm. J. 2007, 7, 29–37. [Google Scholar] [CrossRef] [Green Version]
- De Moor, M.H.; Spector, T.D.; Cherkas, L.F.; Falchi, M.; Hottenga, J.J.; Boomsma, D.I.; De Geus, E.J. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res. Hum. Genet. 2007, 10, 812–820. [Google Scholar] [CrossRef] [Green Version]
- Jacob, Y.; Spiteri, T.; Hart, N.H.; Anderton, R.S. The Potential Role of Genetic Markers in Talent Identification and Athlete Assessment in Elite Sport. Sports 2018, 6, 88. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, K.E.; Ong, F.S.; Blackwell, W.L.; Shah, K.H.; Giani, J.F.; Gonzalez-Villalobos, R.A.; Shen, X.Z.; Fuchs, S.; Touyz, R.M. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol. Rev. 2013, 65, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xu, G.; Liu, D.; Fan, X.; Zhu, W.; Liu, X. Angiotensin-converting enzyme insertion/deletion polymorphism contributes to ischemic stroke risk: A meta-analysis of 50 case-control studies. PLoS ONE 2012, 7, e46495. [Google Scholar] [CrossRef]
- Woods, D.R.; Pollard, A.J.; Collier, D.J.; Jamshidi, Y.; Vassiliou, V.; Hawe, E.; Humphries, S.E.; Montgomery, H.E. Insertion/deletion polymorphism of the angiotensin I-converting enzyme gene and arterial oxygen saturation at high altitude. Am. J. Respir. Crit. Care Med. 2002, 166, 362–366. [Google Scholar] [CrossRef]
- Myerson, S.; Hemingway, H.; Budget, R.; Martin, J.; Humphries, S.; Montgomery, H. Human angiotensin I-converting enzyme gene and endurance performance. J. Appl. Physiol. 1999, 87, 1313–1316. [Google Scholar] [CrossRef] [Green Version]
- Nazarov, I.B.; Woods, D.R.; Montgomery, H.E.; Shneider, O.V.; Kazakov, V.I.; Tomilin, N.V.; Rogozkin, V.A. The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur. J. Hum. Genet. 2001, 9, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, S.; Tandon, S.; Sandhu, J.; Bhanwer, A.S. Association of Angiotensin Converting Enzyme gene Polymorphism and Indian Army Triathletes Performance. Asian J. Sports Med. 2010, 1, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cieszczyk, P.; Krupecki, K.; Maciejewska, A.; Sawczuk, M. The angiotensin converting enzyme gene I/D polymorphism in Polish rowers. Int. J. Sports Med. 2009, 30, 624–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gayagay, G.; Yu, B.; Hambly, B.; Boston, T.; Hahn, A.; Celermajer, D.S.; Trent, R.J. Elite endurance athletes and the ACE I allele--the role of genes in athletic performance. Hum. Genet. 1998, 103, 48–50. [Google Scholar] [CrossRef]
- Papadimitriou, I.D.; Lucia, A.; Pitsiladis, Y.P.; Pushkarev, V.P.; Dyatlov, D.A.; Orekhov, E.F.; Artioli, G.G.; Guilherme, J.P.; Lancha, A.H., Jr.; Gineviciene, V.; et al. ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: A multi-cohort study. BMC Genom. 2016, 17, 285. [Google Scholar] [CrossRef] [Green Version]
- Broos, S.; Malisoux, L.; Theisen, D.; Francaux, M.; Deldicque, L.; Thomis, M.A. Role of alpha-actinin-3 in contractile properties of human single muscle fibers: A case series study in paraplegics. PLoS ONE 2012, 7, e49281. [Google Scholar] [CrossRef] [Green Version]
- Eynon, N.; Hanson, E.D.; Lucia, A.; Houweling, P.J.; Garton, F.; North, K.N.; Bishop, D.J. Genes for elite power and sprint performance: ACTN3 leads the way. Sports Med. 2013, 43, 803–817. [Google Scholar] [CrossRef]
- Roth, S.M.; Walsh, S.; Liu, D.; Metter, E.J.; Ferrucci, L.; Hurley, B.F. The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur. J. Hum. Genet. 2008, 16, 391–394. [Google Scholar] [CrossRef]
- Eynon, N.; Ruiz, J.R.; Femia, P.; Pushkarev, V.P.; Cieszczyk, P.; Maciejewska-Karlowska, A.; Sawczuk, M.; Dyatlov, D.A.; Lekontsev, E.V.; Kulikov, L.M.; et al. The ACTN3 R577X polymorphism across three groups of elite male European athletes. PLoS ONE 2012, 7, e43132. [Google Scholar] [CrossRef] [Green Version]
- Niemi, A.K.; Majamaa, K. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur. J. Hum. Genet. 2005, 13, 965–969. [Google Scholar] [CrossRef]
- Papadimitriou, I.D.; Papadopoulos, C.; Kouvatsi, A.; Triantaphyllidis, C. The ACTN3 gene in elite Greek track and field athletes. Int. J. Sports Med. 2008, 29, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Druzhevskaya, A.M.; Lyubaeva, E.V.; Popov, D.V.; Vinogradova, O.L.; Williams, A.G. The dependence of preferred competitive racing distance on muscle fibre type composition and ACTN3 genotype in speed skaters. Exp. Physiol. 2011, 96, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Eynon, N.; Alves, A.J.; Yamin, C.; Sagiv, M.; Duarte, J.A.; Oliveira, J.; Ayalon, M.; Goldhammer, E.; Sagiv, M.; Meckel, Y. Is there an ACE ID-ACTN3 R577X polymorphisms interaction that influences sprint performance? Int. J. Sports Med. 2009, 30, 888–891. [Google Scholar] [CrossRef] [PubMed]
- Santiago, C.; Gonzalez-Freire, M.; Serratosa, L.; Morate, F.J.; Meyer, T.; Gomez-Gallego, F.; Lucia, A. ACTN3 genotype in professional soccer players. Br. J. Sports Med. 2008, 42, 71–73. [Google Scholar] [CrossRef]
- Charos, A.E.; Reed, B.D.; Raha, D.; Szekely, A.M.; Weissman, S.M.; Snyder, M. A highly integrated and complex PPARGC1A transcription factor binding network in HepG2 cells. Genome Res. 2012, 22, 1668–1679. [Google Scholar] [CrossRef] [Green Version]
- Eynon, N.; Duarte, J.A.; Oliveira, J.; Sagiv, M.; Yamin, C.; Meckel, Y.; Sagiv, M.; Goldhammer, E. ACTN3 R577X polymorphism and Israeli top-level athletes. Int. J. Sports Med. 2009, 30, 695–698. [Google Scholar] [CrossRef]
- Maciejewska, A.; Sawczuk, M.; Cieszczyk, P.; Mozhayskaya, I.A.; Ahmetov, I.I. The PPARGC1A gene Gly482Ser in Polish and Russian athletes. J. Sports Sci. 2012, 30, 101–113. [Google Scholar] [CrossRef]
- Moore, G.E.; Shuldiner, A.R.; Zmuda, J.M.; Ferrell, R.E.; McCole, S.D.; Hagberg, J.M. Obesity gene variant and elite endurance performance. Metabolism 2001, 50, 1391–1392. [Google Scholar] [CrossRef]
- Rubio, J.C.; Martin, M.A.; Rabadan, M.; Gomez-Gallego, F.; San Juan, A.F.; Alonso, J.M.; Chicharro, J.L.; Perez, M.; Arenas, J.; Lucia, A. Frequency of the C34T mutation of the AMPD1 gene in world-class endurance athletes: Does this mutation impair performance? J. Appl. Physiol. 2005, 98, 2108–2112. [Google Scholar] [CrossRef] [Green Version]
- Santiago, C.; Ruiz, J.R.; Buxens, A.; Artieda, M.; Arteta, D.; Gonzalez-Freire, M.; Rodriguez-Romo, G.; Altmae, S.; Lao, J.I.; Gomez-Gallego, F.; et al. Trp64Arg polymorphism in ADRB3 gene is associated with elite endurance performance. Br. J. Sports Med. 2011, 45, 147–149. [Google Scholar] [CrossRef] [Green Version]
- Wagoner, L.E.; Craft, L.L.; Zengel, P.; McGuire, N.; Rathz, D.A.; Dorn, G.W., 2nd; Liggett, S.B. Polymorphisms of the beta1-adrenergic receptor predict exercise capacity in heart failure. Am. Heart J. 2002, 144, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Liggett, S.B. Cardiovascular pharmacogenomics of adrenergic receptor signaling: Clinical implications and future directions. Clin. Pharmacol. Therepeutics 2011, 89, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Wessner, B.; Stuparits, P.; Fail, C.; Pavic, F.; Tschan, H.; Bachl, N. Genetic polymorphisms in alpha-actinin 3 and adrenoceptor beta genes in Austrian elite athletes and healthy controls. Swiss Sports Exerc. Med. 2016, 64, 13–19. [Google Scholar]
- Eynon, N.; Meckel, Y.; Sagiv, M.; Yamin, C.; Amir, R.; Sagiv, M.; Goldhammer, E.; Duarte, J.A.; Oliveira, J. Do PPARGC1A and PPARalpha polymorphisms influence sprint or endurance phenotypes? Scand. J. Med. Sci. Sports 2009, 20, e145–e150. [Google Scholar] [CrossRef] [PubMed]
- Gineviciene, V.; Jakaitiene, A.; Aksenov, M.O.; Aksenova, A.V.; Druzhevskaya, A.M.; Astratenkova, I.V.; Egorova, E.S.; Gabdrakhmanova, L.J.; Tubelis, L.; Kucinskas, V.; et al. Association analysis of ACE, ACTN3 and PPARGC1A gene polymorphisms in two cohorts of European strength and power athletes. Biol. Sport 2016, 33, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, D.; Yan, P.; Yan, S.; Chang, Q.; Cheng, Z. Meta-analyses of the association between the PPARGC1A Gly482Ser polymorphism and athletic performance. Biol. Sport 2019, 36, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Jacob, Y.; Chivers, P.; Anderton, R.S. Genetic predictors of match performance in sub-elite Australian football players: A pilot study. J. Exerc. Sci. Fit. 2019, 17, 41–46. [Google Scholar] [CrossRef]
- Jacob, Y.; Cripps, A.; Evans, T.; Chivers, P.T.; Joyce, C.; Anderton, R.S. Identification of genetic markers for skill and athleticism in sub-elite Australian football players: A pilot study. J. Sports Med. Phys. Fit. 2016, 58, 241–248. [Google Scholar]
- Baruscotti, M.; Barbuti, A.; Bucchi, A. The cardiac pacemaker current. J. Mol. Cell. Cardiol. 2010, 48, 55–64. [Google Scholar] [CrossRef]
- Ciccarelli, M.; Santulli, G.; Pascale, V.; Trimarco, B.; Iaccarino, G. Adrenergic receptors and metabolism: Role in development of cardiovascular disease. Front. Physiol. 2013, 4, 265. [Google Scholar] [CrossRef] [Green Version]
- Woo, A.Y.; Xiao, R.P. beta-Adrenergic receptor subtype signaling in heart: From bench to bedside. Acta Pharm. Sin. 2012, 33, 335–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawczuk, M.; Maciejewska-Karlowska, A.; Cieszczyk, P.; Zarebska, A. Ser49Gly and Arg389Gly polymorphisms of the ADRB1 gene and endurance performance. Cent. Eur. J. Biol. 2012, 7, 794–800. [Google Scholar] [CrossRef]
- Tural, E.; Kara, N.; Agaoglu, S.A.; Elbistan, M.; Tasmektepligil, M.Y.; Imamoglu, O. PPAR-alpha and PPARGC1A gene variants have strong effects on aerobic performance of Turkish elite endurance athletes. Mol. Biol. Rep. 2014, 41, 5799–5804. [Google Scholar] [CrossRef] [PubMed]
- Varillas Delgado, D.; Tellería Orriols, J.J.; Monge Martín, D.; Del Coso, J. Genotype scores in energy and iron-metabolising genes are higher in elite endurance athletes than in non-athlete controls. Appl. Physiol. Nutr. Metab. 2020. [Google Scholar] [CrossRef]
- Grealy, R.; Herruer, J.; Smith, C.L.; Hiller, D.; Haseler, L.J.; Griffiths, L.R. Evaluation of a 7-gene genetic profile for athletic endurance phenotype in ironman championship triathletes. PLoS ONE 2015, 10, e0145171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Hu, Y.; Feng, L.; Bao, D.; Wang, L.; Li, Y.; Wang, J.; Liu, G.; Xi, Y.; Wen, L.; et al. Is there an association between PPARGC1A genotypes and endurance capacity in Chinese men? Scand. J. Med. Sci. Sports 2008, 18, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, O.M.; Moustafa, M.; El Masry, T.M. Association of insertion–deletion polymorphism of ACE gene and Alzheimer’s disease in Egyptian patients. Egypt. J. Med. Hum. Genet. 2014, 15, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Hagberg, J.M.; Moore, G.E.; Ferrell, R.E. Specific genetic markers of endurance performance and VO2max. Exerc. Sport Sci. Rev. 2001, 29, 15–19. [Google Scholar] [CrossRef]
- Vaughan, D.; Huber-Abel, F.A.; Graber, F.; Hoppeler, H.; Fluck, M. The angiotensin converting enzyme insertion/deletion polymorphism alters the response of muscle energy supply lines to exercise. Eur. J. Appl. Physiol. 2013, 113, 1719–1729. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Tanaka, H.; Shono, N.; Miura, S.; Kiyonaga, A.; Shindo, M.; Saku, K. The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin. Genet. 2003, 63, 139–144. [Google Scholar] [CrossRef]
- Dekany, M.; Harbula, I.; Berkes, I.; Gyore, I.; Falus, A.; Pucsok, J. The role of insertion allele of angiotensin converting enzyme gene in higher endurance efficiency and some aspects of pathophysiological and drug effects. Curr. Med. Chem. 2006, 13, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, S.M.; Kilduff, L.P.; Erskine, R.M.; Day, S.H.; McPhee, J.S.; McMahon, G.E.; Stebbings, G.K.; Neale, J.P.; Lockey, S.J.; Ribbans, W.J.; et al. Association of ACTN3 R577X but not ACE I/D gene variants with elite rugby union player status and playing position. Physiol. Genom. 2016, 48, 196–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magi, A.; Unt, E.; Prans, E.; Raus, L.; Eha, J.; Veraksits, A.; Kingo, K.; Koks, S. The Association Analysis between ACE and ACTN3 Genes Polymorphisms and Endurance Capacity in Young Cross-Country Skiers: Longitudinal Study. J. Sports Sci. Med. 2016, 15, 287–294. [Google Scholar] [PubMed]
- Jacob, Y.; Hart, N.H.; Cochrane Wilke, J.; Spiteri, T.; Laws, S.M.; Jones, A.; Rogalski, B.; Kenna, J.; Anderton, R.S. ACTN3 (R577X) Genotype is associated with Australian Football League Players. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Massidda, M.; Bachis, V.; Corrias, L.; Piras, F.; Scorcu, M.; Culigioni, C.; Masala, D.; Calo, C.M. ACTN3 R577X polymorphism is not associated with team sport athletic status in Italians. Sports Med. Open 2015, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.S.; Bolani, W.; Alves, C.R.; Biagi, D.G.; Lemos, J.R., Jr.; da Silva, J.L.; de Oliveira, P.A.; Alves, G.B.; de Oliveira, E.M.; Negrao, C.E.; et al. Elimination of influences of the ACTN3 R577X variant on oxygen uptake by endurance training in healthy individuals. Int. J. Sports Physiol. Perform. 2015, 10, 636–641. [Google Scholar] [CrossRef]
- Pimenta, E.M.; Coelho, D.B.; Veneroso, C.E.; Barros Coelho, E.J.; Cruz, I.R.; Morandi, R.F.; De, A.P.G.; Carvalho, M.R.; Garcia, E.S.; De Paz Fernandez, J.A. Effect of ACTN3 gene on strength and endurance in soccer players. J. Strength Cond. Res. 2013, 27, 3286–3292. [Google Scholar] [CrossRef]
Elite AF n (%) | ||
---|---|---|
ACTN3 R577X | CC | 21 (45.7%) |
CT | 23 (50.0%) | |
TT | 2 (4.3%) | |
C allele | 65 (70.7%) | |
T allele | 27 (29.3%) | |
ACE I/D | II | 11 (23.9%) |
ID | 23 (50.0%) | |
DD | 12 (26.1%) | |
I allele | 45 (48.9%) | |
D allele | 47 (51.1%) | |
ADRB1 Arg389Gly | CC | 25 (54.3%) |
CG | 18 (39.1%) | |
GG | 3 (6.5%) | |
C allele | 68 (73.9%) | |
G allele | 24 (26.1%) | |
PPARGC1a Gly482Ser | GG | 23 (50.0%) |
GA | 18 (39.1%) | |
AA | 5 (10.9%) | |
G allele | 64 (69.6%) | |
A allele | 28 (30.4%) |
Variable | β Coefficient | Standard Error | t Value | Significance | 95% CI |
---|---|---|---|---|---|
Time | 5.467 | 4.184 | 1.307 | 0.195 | −2.847–13.781 |
Age | −0.165 | 0.516 | −0.320 | 0.750 | −1.191–0.861 |
Height | 0.524 | 0.302 | 1.735 | 0.086 | −0.076–1.124 |
Weight | 0.378 | 0.231 | 1.635 | 0.106 | −0.082–0.838 |
BMI | 0.584 | 1.382 | 0.423 | 0.674 | −2.164–3.332 |
Variable | β Coefficient | Standard Error | Significance | 95% CI | |
---|---|---|---|---|---|
ADRB1 | |||||
Intercept | 416.292 | 7.826 | 0.000 | 400.738–431.849 | |
Time point | 1 | 5.467 | 4.128 | 0.189 | −2.740–13.673 |
2 | 0 * | ||||
ADRB1 Arg389Gly | CC | −17.568 | 8.128 | 0.034 | −33.766–−1.371 |
CG | −13.806 | 8.297 | 0.100 | −30.301–2.688 | |
GG | 0* | ||||
ACE | |||||
Intercept | 397.802 | 4.403 | 0.000 | 389.049–406.556 | |
Time point | 1 | 5.467 | 4.198 | 0.196 | −2.878–13.812 |
2 | 0 * | ||||
ACE I/D | II | 6.049 | 5.815 | 0.301 | −5.510–17.608 |
ID | 4.146 | 4.999 | 0.409 | −5.791–14.084 | |
DD | 0 * | ||||
ACTN3 | |||||
Intercept | 399.571 | 9.807 | 0.00 | 380.074–419.067 | |
Time point | 1 | 5.467 | 4.222 | 0.199 | −2.927–13.860 |
2 | 0 * | ||||
ACTN3 R577X | CC | 0.748 | 10.153 | 0.941 | −19.436–20.932 |
CT | 2.929 | 10.093 | 0.772 | −17/135–22.993 | |
TT | 0 * | ||||
PPARGC1a | |||||
Intercept | 389.763 | 6.175 | 0.00 | 377.488–402.038 | |
Time point | 1 | 5.467 | 4.111 | 0.187 | −2.706–13.640 |
2 | 0 * | ||||
PPARGC1a Gly482Ser | GG | 14.421 | 6.595 | 0.031 | 1.311–27.531 |
AG | 11.293 | 6.800 | 0.100 | −2.224–24.810 | |
AA | 0* |
Nomadic n (%) | Non-Nomadic n (%) | Significance (p) | ETA Squared (η2) | |||
---|---|---|---|---|---|---|
ACE I/D | II | 8 (24.2%) | 3 (25.0%) | |||
ID | 16 (48.5%) | 7 (58.3%) | 0.904 | 0.013 | Small | |
DD | 9 (27.3%) | 2 (16.7%) | ||||
I allele | 32 (48.5%) | 13 (54.2%) | 0.812 | 0.005 | Small | |
D allele | 34 (51.5%) | 11 (45.8%) | ||||
ACTN3 R577X | CC | 14 (42.4%) | 6 (50.0%) | |||
CT | 17 (51.5%) | 6 (50.0%) | 1.000 | 0.019 | Small | |
TT | 2 (6.1%) | 0 (0.0%) | ||||
C allele | 45 (68.2%) | 18 (75.0%) | 0.611 | 0.009 | None | |
T allele | 21 (31.8%) | 6 (25.0%) | ||||
ADRB1 | CC | 21 (63.6%) | 3 (25.0%) | |||
Arg389Gly | CG | 11 (33.3%) | 7 (58.3%) | 0.037 | 0.140 | Large |
GG | 1 (3.0%) | 2 (16.7%) | ||||
C allele | 53 (80.3%) | 13 (54.2%) | 0.029 | 0.137 | Moderate | |
G allele | 13 (19.7%) | 11 (45.8%) | ||||
PPARGC1a | GG | 17 (51.5%) | 6 (50.0%) | |||
Gly482Ser | AG | 11 (33.3%) | 6 (50.0%) | 0.393 | 0.055 | Small |
AA | 5 (15.2%) | 0 (0.0%) | ||||
G allele | 45 (68.2%) | 18 (75.0%) | 0.611 | 0.009 | None | |
A allele | 21 (31.8%) | 6 (25.0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacob, Y.; Anderton, R.S.; Cochrane Wilkie, J.L.; Rogalski, B.; Laws, S.M.; Jones, A.; Spiteri, T.; Hart, N.H. Association of Genetic Variances in ADRB1 and PPARGC1a with Two-Kilometre Running Time-Trial Performance in Australian Football League Players: A Preliminary Study. Sports 2021, 9, 22. https://doi.org/10.3390/sports9020022
Jacob Y, Anderton RS, Cochrane Wilkie JL, Rogalski B, Laws SM, Jones A, Spiteri T, Hart NH. Association of Genetic Variances in ADRB1 and PPARGC1a with Two-Kilometre Running Time-Trial Performance in Australian Football League Players: A Preliminary Study. Sports. 2021; 9(2):22. https://doi.org/10.3390/sports9020022
Chicago/Turabian StyleJacob, Ysabel, Ryan S. Anderton, Jodie L. Cochrane Wilkie, Brent Rogalski, Simon M. Laws, Anthony Jones, Tania Spiteri, and Nicolas H. Hart. 2021. "Association of Genetic Variances in ADRB1 and PPARGC1a with Two-Kilometre Running Time-Trial Performance in Australian Football League Players: A Preliminary Study" Sports 9, no. 2: 22. https://doi.org/10.3390/sports9020022