Using Velocity to Predict the Maximum Dynamic Strength in the Power Clean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Subjects
2.3. Power Clean 1-RM
2.4. Predicted Power Clean 1-RM
2.5. Instrumentation
2.6. Statistical analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loturco, I.; Kobal, R.; Moraes, J.E.; Kitamura, K.; Abad, C.C.C.; Pereira, L.A.; Nakamura, F.Y. Predicting the maximum dynamic strength in bench press: The high precision of the bar velocity approach. J. Strength Cond. Res. 2017, 31, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Pereira, L.A.; Abad, C.C.C.; Gil, S.; Kitamura, K.; Kobal, R.; Nakamura, F.Y. Using bar velocity to predict the maximum dynamic strength in the half-squat exercise. Int. J. Sports Physiol. Perform. 2016, 11, 697–700. [Google Scholar] [CrossRef] [PubMed]
- Buckner, S.L.; Jessee, M.B.; Mattocks, K.T.; Mouser, J.G.; Counts, B.R.; Dankel, S.J.; Loenneke, J.P. Determining strength: A case for multiple methods of measurement. Sports Med. 2017, 47, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Torrejon, A.; Balsalobre-Fernandez, C.; Haff, G.G.; Garcia-Ramos, A. The load-velocity profile differs more between men and women than between individuals with different strength levels. Sports Biomech. 2019, 18, 245–255. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, J.J.; Marques, M.C.; Sanchez-Medina, L. The importance of movement velocity as a measure to control resistance training intensity. J. Hum. Kinet. 2011, 29A, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, M.; Flanagan, E.P. Researched applications of velocity based strength training. J. Aust. Strength Cond. 2014, 22, 58–69. [Google Scholar]
- Banyard, H.G.; Nosaka, K.; Haff, G.G. Reliability and validity of the load-velocity relationship to predict the 1rm back squat. J. Strength Cond. Res. 2017, 31, 1897–1904. [Google Scholar] [CrossRef]
- Munoz-Lopez, M.; Marchante, D.; Cano-Ruiz, M.A.; Chicharro, J.L.; Balsalobre-Fernandez, C. Load-, force-, and power-velocity relationships in the prone pull-up exercise. Int. J. Sports Physiol. Perform. 2017, 12, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- Balsalobre-Fernández, C.; García-Ramos, A.; Jiménez-Reyes, P. Load–velocity profiling in the military press exercise: Effects of gender and training. Int. J. Sports Sci. Coach. 2018, 13, 743–750. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, J.J.; Sanchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; Gonzalez-Badillo, J.J.; Perez, C.E.; Pallares, J.G. Velocity- and power-load relationships of the bench pull vs. Bench press exercises. Int. J. Sports Med. 2014, 35, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Conceicao, F.; Fernandes, J.; Lewis, M.; Gonzalez-Badillo, J.J.; Jimenez-Reyes, P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J. Sports Sci. 2016, 34, 1099–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruf, L.; Chery, C.; Taylor, K.L. Validity and reliability of the load-velocity relationship to predict the one-repetition maximum in deadlift. J. Strength Cond. Res. 2018, 32, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Lake, J.; Naworynsky, D.; Duncan, F.; Jackson, M.J. Comparison of different minimal velocity thresholds to establish deadlifts one repetition maximum. Sports 2017, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, M.; Gonzalez-Badillo, J.J.; Hakkinen, K.; Ibanez, J.; Kraemer, W.J.; Altadill, A.; Eslava, J.; Gorostiaga, E.M. Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. Int. J. Sports Med. 2006, 27, 718–724. [Google Scholar] [CrossRef]
- Ebben, W.P.; Blackard, D.O. Strength and conditioning practices of national football league strength and conditioning coaches. J. Strength Cond. Res. 2001, 15, 48–58. [Google Scholar]
- Ebben, W.P.; Hintz, M.J.; Simenz, C.J. Strength and conditioning practices of major league baseball strength and conditioning coaches. J. Strength Cond. Res. 2005, 19, 538–546. [Google Scholar]
- Simenz, C.J.; Dugan, C.A.; Ebben, W.P. Strength and conditioning practices of national basketball association strength and conditioning coaches. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2005, 19, 495–504. [Google Scholar] [CrossRef]
- Orange, S.T.; Metcalfe, J.W.; Marshall, P.; Vince, R.V.; Madden, L.A.; Liefeith, A. Test-retest reliability of a commercial linear position transducer (gymaware powertool) to measure velocity and power in the back squat and bench press. J. Strength Cond. Res. 2020, 34, 728–737. [Google Scholar] [CrossRef] [Green Version]
- Haff, G.G.; Triplett, N. Essentials of Strength Training and Conditioning, 4th ed.; Human Kinetics: Champaign, IL, USA, 2016. [Google Scholar]
- Harris, N.K.; Cronin, J.; Taylor, K.-L.; Boris, J.; Sheppard, J. Understanding position transducer technology for strength and conditioning practitioners. Strength Cond. J. 2010, 32, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Banyard, H.G.; Nosaka, K.; Sato, K.; Haff, G.G. Validity of various methods for determining velocity, force and power in the back squat. Int. J. Sports Physiol. Perform. 2017, 12, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; A Scale of Magnitude for Effect Statistics. Internet Society for Sportscience. 1998. Available online: Sportsci.org/resource/stats/effectmag.html.1/1/20192012 (accessed on 1 July 2020).
- Haff, G.G.; Ruben, R.P.; Lider, J.; Twine, C.; Cormie, P. A comparison of methods for determining the rate of force development during isometric midthigh clean pulls. J. Strength Cond. Res. 2015, 29, 386–395. [Google Scholar] [CrossRef] [PubMed]
- James, L.P.; Roberts, L.A.; Haff, G.G.; Kelly, V.G.; Beckman, E.M. Validity and reliability of a portable isometric mid-thigh clean pull. J. Strength Cond. Res. 2017, 31, 1378–1386. [Google Scholar] [CrossRef] [Green Version]
- Cumming, G.; Calin-Jageman, R. Introduction to the New Statistics: Estimation, Open Science, and Beyond, 2nd ed.; Routledge: New York, NY, USA, 2017; p. 563. [Google Scholar]
- Jidovtseff, B.; Harris, N.K.; Crielaard, J.M.; Cronin, J.B. Using the load-velocity relationship for 1rm prediction. J. Strength Cond. Res. 2011, 25, 267–270. [Google Scholar] [CrossRef]
- Chiu, L.Z.; Schilling, B.K. A primer on weightlifting: From sport to sports training. Strength Cond. J. 2005, 27, 42–48. [Google Scholar] [CrossRef]
- Enoka, R.M. The pull in olympic weightlifting. Med. Sci. Sports 1979, 11, 131–137. [Google Scholar]
- Cormie, P.; McCaulley, G.O.; Triplett, N.T.; McBride, J.M. Optimal loading for maximal power output during lower-body resistance exercises. Med. Sci. Sports Exerc. 2007, 39, 340–349. [Google Scholar] [CrossRef]
- Oranchuk, D.J.; Drinkwater, E.J.; Lindsay, R.S.; Helms, E.R.; Harbour, E.T.; Storey, A.G. Improvement of kinetic, kinematic, and qualitative performance variables of the power clean with the hook grip. Int. J. Sports Physiol. Perform. 2019, 14, 378–384. [Google Scholar] [CrossRef]
- Marriner, C.R.; Cronin, J.B.; Macadam, P.; Storey, A. Redistributing load using wearable resistance during power clean training improves athletic performance. Eur. J. Sport Sci. 2017, 17, 1101–1109. [Google Scholar] [CrossRef]
- Naclerio, F.; Larumbe-Zabala, E. Predicting relative load by peak movement velocity and ratings of perceived exertion in power clean. J. Hum. Mov. Exerc. Sci. 2018, 13, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ramos, A.; Haff, G.G.; Padial, P.; Feriche, B. Reliability of power and velocity variables collected during the traditional and ballistic bench press exercise. Sports Biomech. 2018, 17, 117–130. [Google Scholar] [CrossRef]
- Sayers, M.G.L.; Schlaeppi, M.; Hitz, M.; Lorenzetti, S. The impact of test loads on the accuracy of 1rm prediction using the load-velocity relationship. BMC Sports Sci. Med. Rehabil. 2018, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orange, S.T.; Metcalfe, J.W.; Liefeith, A.; Marshall, P.; Madden, L.A.; Fewster, C.R.; Vince, R.V. Validity and reliability of a wearable inertial sensor to measure velocity and power in the back squat and bench press. J. Strength Cond. Res. 2019, 33, 2398–2408. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ramos, A.; Pestana-Melero, F.L.; Perez-Castilla, A.; Rojas, F.J.; Haff, G.G. Mean velocity vs. Mean propulsive velocity vs. Peak velocity: Which variable determines bench press relative load with higher reliability? J. Strength Cond. Res. 2018, 32, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Jukic, I.; García-Ramos, A.; Malecek, J.; Omcirk, D.; Tufano, J.J. Validity of load–velocity relationship to predict 1 repetition maximum during deadlifts performed with and without lifting straps: The accuracy of six prediction models. J. Strength Cond. Res. Publish Ahead of Print (ahead of press). Available online: https://journals.lww.com/nsca-jscr/Abstract/9000/Validity_of_Load_Velocity_Relationship_to_Predict.94425.aspx (accessed on 13 April 2020). [CrossRef]
- Ormsbee, M.J.; Carzoli, J.P.; Klemp, A.; Allman, B.R.; Zourdos, M.C.; Kim, J.S.; Panton, L.B. Efficacy of the repetitions in reserve-based rating of perceived exertion for the bench press in experienced and novice benchers. J. Strength Cond. Res. 2019, 33, 337–345. [Google Scholar] [CrossRef]
- Comfort, P.; McMahon, J.J. Reliability of maximal back squat and power clean performances in inexperienced athletes. J. Strength Cond. Res. 2015, 29, 3089–3096. [Google Scholar] [CrossRef]
Peak Velocity (m·s−1) | ||||
%1-RM | Actual (90% CI) | Predicted (90% CI) | p | d |
30 | 3.29 (3.07–3.51) | 3.37 (3.34–3.41) | 0.48 | 0.21 |
45 | 2.82 (2.68–2.96) | 3.13 (3.07–3.18) | <0.01 | 1.01 |
70 | 2.32 (2.22–2.43) | 2.69 (2.60–2.78) | <0.01 | 1.19 |
80 | 2.18 (2.07–2.29) | 2.52 (2.42–2.61) | <0.01 | 1.13 |
100 | 1.79 (1.71–1.87) | 2.20 (2.09–2.32) | <0.01 | 1.28 |
Mean Velocity (m·s−1) | ||||
%1-RM | Actual (90% CI) | Predicted (90% CI) | p | d |
30 | 1.89 (1.77–2.00) | 1.95 (1.92–1.97) | 0.38 | 0.32 |
45 | 1.54 (1.42–1.67) | 1.78 (1.74–1.81) | <0.01 | 1.00 |
70 | 1.22 (1.12–1.32) | 1.47 (1.41–1.53) | <0.01 | 1.17 |
80 | 1.09 (1.00–1.18) | 1.35 (1.29–1.41) | <0.01 | 1.18 |
100 | 0.92 (0.84–1.00) | 1.13 (1.04–1.21) | <0.01 | 0.98 |
Four Point | |||||||||
---|---|---|---|---|---|---|---|---|---|
TE STD | TE Raw (kg) | CV% (90% CI) | SWC (kg) | r | ES (90%CI) | ICC (90%CI) | p | ||
Entire Group | Peak Velocity | 0.64 | 7.15 | 10.4 (7.1–20.9) | 2.60 | 0.84 | −0.11 (−0.62–0.40) | 0.86 (0.73–0.93) | 0.367 |
Mean Velocity | 1.29 | 10.12 | 14.4 (11.0–20.9) | 2.49 | 0.61 | −0.51 (−1.06–0.04) | 0.64 (0.33–0.82) | 0.022 | |
Stronger | Peak Velocity | 0.66 | 6.21 | 7.6 (5.5–12.9) | 2.49 | 0.84 | −0.22 (−0.55–0.11) | 0.86 (0.59–0.95) | 0.262 |
Weaker | Peak Velocity | 0.80 | 7.67 | 11.6 (8.4–19.9) | 2.32 | 0.78 | −0.23 (−0.39–0.34) | 0.76 (0.36–0.91) | 0.916 |
Stronger | Mean Velocity | 3.13 | 9.27 | 12.5 (8.7–23.6) | 1.82 | 0.3 | −0.36 (−1.08–0.36) | 0.35 (0.25–0.75) | 0.391 |
Weaker | Mean Velocity | 1.53 | 11.50 | 16.8 (11.6–32.2) | 2.57 | 0.55 | −0.48 (−1.31–0.34) | 0.56 (0.02–0.85) | 0.026 |
Three Point | |||||||||
---|---|---|---|---|---|---|---|---|---|
TE STD | TE Raw (kg) | CV% (90% CI) | SWC (kg) | r | ES (90%CI) | ICC (90%CI) | p | ||
Entire Group | Peak Velocity | 0.75 | 8.02 | 12.8 (8.6–25.9) | 2.60 | 0.80 | −0.25 (−0.49–0.00) | 0.78 (0.58–0.89) | 0.097 |
Mean Velocity | 2.01 | 11.48 | 15.1 (10.2–31.0) | 2.49 | 0.44 | −0.71 (−1.13–−0.28) | 0.42 (−0.01–0.70) | 0.008 | |
Stronger | Peak Velocity | 0.67 | 6.32 | 7.5 (4.8–18.6) | 2.15 | 0.83 | −0.32 (−1.07– 0.43) | 0.78 (0.47–0.92) | 0.470 |
Weaker | Peak Velocity | 0.99 | 8.60 | 13.3 (8.5–34.6) | 2.32 | 0.71 | −0.22 (−0.97–0.53) | 0.89 (0.7–0.96) | 0.620 |
Stronger | Mean Velocity | 1.79 | 8.49 | 3.8 (2.4–9.2) | 1.82 | 0.49 | −0.75 (−1.53–0.04) | 0.55 (−0.02–0.85) | 0.110 |
Weaker | Mean Velocity | 16.08 | 13.72 | 16.9 (10.7–44.9) | 2.57 | 0.06 | −0.88 (−1.64–−0.13) | −0.10 (−0.50–0.60) | 0.060 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haff, G.G.; Garcia-Ramos, A.; James, L.P. Using Velocity to Predict the Maximum Dynamic Strength in the Power Clean. Sports 2020, 8, 129. https://doi.org/10.3390/sports8090129
Haff GG, Garcia-Ramos A, James LP. Using Velocity to Predict the Maximum Dynamic Strength in the Power Clean. Sports. 2020; 8(9):129. https://doi.org/10.3390/sports8090129
Chicago/Turabian StyleHaff, G. Gregory, Amador Garcia-Ramos, and Lachlan P. James. 2020. "Using Velocity to Predict the Maximum Dynamic Strength in the Power Clean" Sports 8, no. 9: 129. https://doi.org/10.3390/sports8090129
APA StyleHaff, G. G., Garcia-Ramos, A., & James, L. P. (2020). Using Velocity to Predict the Maximum Dynamic Strength in the Power Clean. Sports, 8(9), 129. https://doi.org/10.3390/sports8090129