Physical Fitness after Anterior Cruciate Ligament Reconstruction: Influence of Graft, Age, and Sex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Patients
2.3. Procedures
2.4. Statistical Analyses
3. Results
3.1. Patient-Reported Outcome Measures
3.2. Back in Action Tests
3.3. Isokinetic Strength Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beynnon, B.D.; Vacek, P.M.; Newell, M.K.; Tourville, T.W.; Smith, H.C.; Shultz, S.J.; Slauterbeck, J.R.; Johnson, R.J. The effects of level of competition, sport, and sex on the incidence of first-time noncontact anterior cruciate ligament injury. Am. J. Sports Med. 2014, 42, 1806–1812. [Google Scholar] [CrossRef] [PubMed]
- Prodromos, C.C.; Han, Y.; Rogowski, J.; Joyce, B.; Shi, K. A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy 2007, 23, 1320–1325.e6. [Google Scholar] [CrossRef] [PubMed]
- Webster, K.E.; Feller, J.A. Return to Level I Sports after Anterior Cruciate Ligament Reconstruction: Evaluation of Age, Sex, and Readiness to Return Criteria. Orthop. J. Sports Med. 2018, 6, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnussen, R.A.; Meschbach, N.T.; Kaeding, C.C.; Wright, R.W.; Spindler, K.P. ACL Graft and Contralateral ACL Tear Risk within Ten Years Following Reconstruction: A Systematic Review. JBJS Rev. 2015, 3. [Google Scholar] [CrossRef] [PubMed]
- Dekker, T.J.; Godin, J.A.; Dale, K.M.; Garrett, W.E.; Taylor, D.C.; Riboh, J.C. Return to Sport After Pediatric Anterior Cruciate Ligament Reconstruction and Its Effect on Subsequent Anterior Cruciate Ligament Injury. JBJS 2017, 99, 897–904. [Google Scholar] [CrossRef]
- Barber-Westin, S.D.; Noyes, F.R. Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy 2011, 27, 1697–1705. [Google Scholar] [CrossRef]
- Abrams, G.D.; Harris, J.D.; Gupta, A.K.; McCormick, F.M.; Bush-Joseph, C.A.; Verma, N.N.; Cole, B.J.; Bach, B.R. Functional Performance Testing After Anterior Cruciate Ligament Reconstruction: A Systematic Review. Orthop. J. Sports Med. 2014, 2, 1–10. [Google Scholar] [CrossRef]
- Davies, G.J.; McCarty, E.; Provencher, M.; Manske, R.C. ACL Return to Sport Guidelines and Criteria. Curr. Rev. Musculoskelet. Med. 2017, 10, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Van Melick, N.; van Cingel, R.E.H.; Brooijmans, F.; Neeter, C.; van Tienen, T.; Hullegie, W.; Nijhuis-van der Sanden, M.W.G. Evidence-based clinical practice update: Practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. Br. J. Sports Med. 2016, 50, 1506–1515. [Google Scholar] [CrossRef] [Green Version]
- Werner, J.L.; Burland, J.P.; Mattacola, C.G.; Toonstra, J.; English, R.A.; Howard, J.S. Decision to Return to Sport Participation After Anterior Cruciate Ligament Reconstruction, Part II: Self-Reported and Functional Performance Outcomes. J. Athl. Train. 2018, 53, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Webster, K.E.; Hewett, T.E. What is the Evidence for and Validity of Return-to-Sport Testing after Anterior Cruciate Ligament Reconstruction Surgery? A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 917–929. [Google Scholar] [CrossRef] [PubMed]
- DiFabio, M.; Slater, L.V.; Norte, G.; Goetschius, J.; Hart, J.M.; Hertel, J. Relationships of Functional Tests Following ACL Reconstruction: Exploratory Factor Analyses of the Lower Extremity Assessment Protocol. J. Sport Rehabil. 2018, 27, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Ageberg, E.; Roos, H.P.; Silbernagel, K.G.; Thomeé, R.; Roos, E.M. Knee extension and flexion muscle power after anterior cruciate ligament reconstruction with patellar tendon graft or hamstring tendons graft: A cross-sectional comparison 3 years post surgery. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Fischer, F.; Fink, C.; Herbst, E.; Hoser, C.; Hepperger, C.; Blank, C.; Gföller, P. Higher hamstring-to-quadriceps isokinetic strength ratio during the first post-operative months in patients with quadriceps tendon compared to hamstring tendon graft following ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Heijne, A.; Werner, S. A 2-year follow-up of rehabilitation after ACL reconstruction using patellar tendon or hamstring tendon grafts: A prospective randomised outcome study. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 805–813. [Google Scholar] [CrossRef]
- Hildebrandt, C.; Müller, L.; Zisch, B.; Huber, R.; Fink, C.; Raschner, C. Functional assessments for decision-making regarding return to sports following ACL reconstruction. Part I: Development of a new test battery. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 1273–1281. [Google Scholar] [CrossRef] [Green Version]
- Wirth, B.; Liffert, F.; de Bruin, E. Entwicklung und Evaluation einer deutschen Version des Lysholm-Scores zur Erfassung der Funktion nach einer Verletzung des vorderen Kreuzbands. Sportverletz. Sportschaden 2011, 25, 37–43. [Google Scholar] [CrossRef]
- Wirth, B.; Meier, N.; Koch, P.; Swanenburg, J. Entwicklung und Evaluation einer deutschen Version der Tegner Aktivitätsskala zur Erfassung der Funktion nach einer Verletzung des vorderen Kreuzbands. Sportverletz. Sportschaden 2013, 27, 21–27. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [Green Version]
- Herbst, E.; Hoser, C.; Hildebrandt, C.; Raschner, C.; Hepperger, C.; Pointner, H.; Fink, C. Functional assessments for decision-making regarding return to sports following ACL reconstruction. Part II: Clinical application of a new test battery. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 1283–1291. [Google Scholar] [CrossRef] [Green Version]
- Ebert, J.R.; Edwards, P.; Currie, J.; Smith, A.; Joss, B.; Ackland, T.; Buelow, J.-U.; Hewitt, B. Comparison of the “Back in Action” test battery to standard hop tests and isokinetic knee dynamometry in patients following anterior cruciate ligament reconstruction. Int. J. Sports Phys. Ther. 2018, 13, 389–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otzel, D.M.; Chow, J.W.; Tillman, M.D. Long-term deficits in quadriceps strength and activation following anterior cruciate ligament reconstruction. Phys. Ther. Sport 2015, 16, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Petschnig, R.; Baron, R.; Albrecht, M. The relationship between isokinetic quadriceps strength test and hop tests for distance and one-legged vertical jump test following anterior cruciate ligament reconstruction. J. Orthop. Sports Phys. Ther. 1998, 28, 23–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barfod, K.W.; Feller, J.A.; Hartwig, T.; Devitt, B.M.; Webster, K.E. Knee extensor strength and hop test performance following anterior cruciate ligament reconstruction. Knee 2019, 26, 149–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobbi, A.; Domzalski, M.; Pascual, J. Comparison of anterior cruciate ligament reconstruction in male and female athletes using the patellar tendon and hamstring autografts. Knee Surg. Sports Traumatol. Arthrosc. 2004, 12, 534–539. [Google Scholar] [CrossRef]
- Ueda, Y.; Matsushita, T.; Araki, D.; Kida, A.; Takiguchi, K.; Shibata, Y.; Ono, K.; Ono, R.; Matsumoto, T.; Takayama, K.; et al. Factors affecting quadriceps strength recovery after anterior cruciate ligament reconstruction with hamstring autografts in athletes. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3213–3219. [Google Scholar] [CrossRef]
- Villa, F.D.; Ricci, M.; Perdisa, F.; Filardo, G.; Gamberini, J.; Caminati, D.; Villa, S.D. Anterior cruciate ligament reconstruction and rehabilitation: Predictors of functional outcome. Joints 2015, 3, 179–185. [Google Scholar] [CrossRef]
Sample Size | 227 |
---|---|
Age (yrs) | 23.8 ± 8.4 |
Males:Females (%) | 61.6:38.4 |
QT:SGT (%) | 61.2:38.8 |
Primary reconstruction: Revision: Contralateral ACL surgery (%) | 80.6:10.6:8.8 |
Simple ACL injury: Complex ACL injury (%) | 48.5:51.5 |
VAS | Lysholm | Tegner | ||||
---|---|---|---|---|---|---|
Baseline | Δ 0–6 mo. | Baseline | Δ 0–6 mo. | Baseline | Δ 0–6 mo. | |
Total (n = 227) | ||||||
(n = 227) | 0.86 ± 1.60 | +0.21 ± 1.86 | 95.21 ± 12.23 | −5.96 ± 13.60 | 7.38 ± 1.62 | −0.37 ± 1.54 |
Graft (SGT: n = 88, QT: n = 139) | ||||||
SGT | 0.89 ± 1.88 | +0.18 ± 2.07 | 95.34 ± 14.60 | −6.49 ± 15.03 | 7.17 ± 1.72 | −0.32 ± 1.56 |
QT | 0.85 ± 1.39 | +0.23 ± 1.73 | 95.12 ± 10.53 | −5.63 ± 12.69 | 7.52 ± 1.54 | −0.39 ± 1.53 |
Age group (10–19 yrs: n = 88, 20–29 yrs: n = 105, 30–50 yrs: n = 34) | ||||||
10–19 yrs | 0.90 ± 1.78 | +0.03 ± 1.77 | 93.78 ± 16.42 | −2.66 ± 14.70 * | 7.78 ± 1.47 | −0.17 ± 1.16 |
20–29 yrs | 0.79 ± 1.49 | +0.39 ± 1.75 | 96.32 ± 8.30 | −7.51 ± 11.75 | 7.53 ± 1.39 | −0.55 ± 1.63 |
30–50 yrs | 1.00 ± 1.46 | +0.15 ± 2.40 | 95.41 ± 9.53 | −9.59 ± 14.84 | 5.92 ± 1.83 * | −0.30 ± 2.02 |
Sex (Men: n = 144, Women: n = 83) | ||||||
Men | 0.94 ± 1.63 | +0.17 ± 1.97 | 94.76 ± 13.75 | −5.73 ± 15.54 | 7.52 ± 1.63 | −0.43 ± 1.71 |
Women | 0.72 ± 1.53 | +0.29 ± 1.67 | 95.99 ± 9.07 | −6.34 ± 9.64 | 7.15 ± 1.57 | −0.26 ± 1.20 |
Very Poor (%) | Poor (%) | Norm (%) | Good (%) | Very Good (%) | |
---|---|---|---|---|---|
2-leg stability | 2 (0.8) | 8 (3.3) | 71 (29.0) | 42 (17.1) | 122 (49.8) |
1-leg stability H | 6 (2.4) | 9 (3.7) | 90 (36.7) | 64 (26.1) | 76 (31.0) |
1-leg stability I | 7 (2.9) | 11 (4.5) | 91 (37.1) | 50 (20.4) | 86 (35.1) |
2-leg jump height | 20 (8.2) | 15 (6.1) | 71 (29.0) | 27 (11.0) | 112 (45.7) |
2 jump power | 2 (0.8) | 6 (2.4) | 94 (38.4) | 37 (15.1) | 106 (43.3) |
1-leg jump height H | 19 (7.8) | 9 (3.7) | 91 (37.1) | 24 (9.8) | 102 (41.6) |
1-leg jump power H | 5 (2.0) | 4 (1.6) | 44 (18.0) | 47 (19.2) | 145 (59.2) |
1-leg jump height I | 38 (15.5) | 22 (9.0) | 79 (32.2) | 28 (11.4) | 78 (31.8) |
1-leg jump power I | 6 (2.4) | 6 (2.4) | 65 (26.5) | 37 (15.1) | 131 (53.5) |
Plyometric RSI | 23 (9.4) | 31 (12.7) | 154 (62.9) | 21 (8.6) | 16 (6.5) |
Speedy healthy | 19 (7.8) | 16 (6.5) | 83 (33.9) | 53 (21.6) | 74 (30.2) |
Speedy injured | 19 (7.8) | 16 (6.5) | 89 (36.3) | 59 (24.1) | 62 (25.3) |
Quick feet | 22 (9.0) | 5 (2.0) | 75 (30.6) | 45 (18.4) | 98 (40.0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csapo, R.; Pointner, H.; Hoser, C.; Gföller, P.; Raschner, C.; Fink, C. Physical Fitness after Anterior Cruciate Ligament Reconstruction: Influence of Graft, Age, and Sex. Sports 2020, 8, 30. https://doi.org/10.3390/sports8030030
Csapo R, Pointner H, Hoser C, Gföller P, Raschner C, Fink C. Physical Fitness after Anterior Cruciate Ligament Reconstruction: Influence of Graft, Age, and Sex. Sports. 2020; 8(3):30. https://doi.org/10.3390/sports8030030
Chicago/Turabian StyleCsapo, Robert, Helmut Pointner, Christian Hoser, Peter Gföller, Christian Raschner, and Christian Fink. 2020. "Physical Fitness after Anterior Cruciate Ligament Reconstruction: Influence of Graft, Age, and Sex" Sports 8, no. 3: 30. https://doi.org/10.3390/sports8030030
APA StyleCsapo, R., Pointner, H., Hoser, C., Gföller, P., Raschner, C., & Fink, C. (2020). Physical Fitness after Anterior Cruciate Ligament Reconstruction: Influence of Graft, Age, and Sex. Sports, 8(3), 30. https://doi.org/10.3390/sports8030030