Y-Balance Test Performance Does Not Determine Non-Contact Lower Quadrant Injury in Collegiate American Football Players
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kerr, Z.Y.; Marshall, S.W.; Dompier, T.P.; Corlette, J.; Klossner, D.A.; Gilchrist, J. College Sports-Related Injuries—United States, 2009-10 Through 2013-14 Academic Years. MMWR. Morb. Mortal. Wkly. Rep. 2015, 64, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Lievers, W.B.; Adamic, P.F. Incidence and Severity of Foot and Ankle Injuries in Men’s Collegiate American Football. Orthop. J. Sports Med. 2015, 3. [Google Scholar] [CrossRef] [PubMed]
- Dragoo, J.L.; Braun, H.J.; Durham, J.L.; Chen, M.R.; Harris, A.H. Incidence and risk factors for injuries to the anterior cruciate ligament in National Collegiate Athletic Association football: Data from the 2004–2005 through 2008–2009 National Collegiate Athletic Association Injury Surveillance System. Am. J. Sports Med. 2012, 40, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Shankar, P.R.; Fields, S.K.; Collins, C.L.; Dick, R.W.; Comstock, R.D. Epidemiology of high school and collegiate football injuries in the United States, 2005–2006. Am. J. Sports Med. 2007, 35, 1295–1303. [Google Scholar] [CrossRef]
- Kerr, Z.Y.; Simon, J.E.; Grooms, D.R.; Roos, K.G.; Cohen, R.P.; Dompier, T.P. Epidemiology of Football Injuries in the National Collegiate Athletic Association, 2004–2005 to 2008–2009. Orthop. J. Sports Med. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Steiner, M.E.; Berkstresser, B.D.; Richardson, L.; Elia, G.; Wang, F. Full-Contact Practice and Injuries in College Football. Sports Health 2016, 8, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Westermann, R.W.; Kerr, Z.Y.; Wehr, P.; Amendola, A. Increasing Lower Extremity Injury Rates Across the 2009–2010 to 2014–2015 Seasons of National Collegiate Athletic Association Football: An Unintended Consequence of the “Targeting” Rule Used to Prevent Concussions? Am. J. Sports Med. 2016, 44, 3230–3236. [Google Scholar] [CrossRef]
- Torg, J.S.; Vegso, J.J.; Sennett, B.; Das, M. The National Football Head and Neck Injury Registry. 14-year report on cervical quadriplegia, 1971 through 1984. JAMA 1985, 254, 3439–3443. [Google Scholar] [CrossRef]
- McCunn, R.; Fullagar, H.H.K.; Williams, S.; Halseth, T.J.; Sampson, J.A.; Murray, A. The Influence of Playing Experience and Position on Injury Risk in NCAA Division I College Football Players. Int. J. Sports Physiol. Perform. 2017, 12, 1297–1304. [Google Scholar] [CrossRef]
- Wilkerson, G.B.; Colston, M.A. A Refined Prediction Model for Core and Lower Extremity Sprains and Strains Among Collegiate Football Players. J. Athl. Train. 2015, 50, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Butler, R.J.; Lehr, M.E.; Fink, M.L.; Kiesel, K.B.; Plisky, P.J. Dynamic balance performance and noncontact lower extremity injury in college football players: An initial study. Sports Health 2013, 5, 417–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.A.; Chimera, N.J.; Warren, M. Association of y balance test reach asymmetry and injury in division I athletes. Med. Sci. Sports Exerc. 2015, 47, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Eckard, T.; Padua, D.; Mauntel, T.; Frank, B.; Pietrosimone, L.; Begalle, R.; Goto, S.; Clark, M.; Kucera, K. Association between double-leg squat and single-leg squat performance and injury incidence among incoming NCAA Division I athletes: A prospective cohort study. Phys. Ther. Sport 2018, 34, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Plisky, P.J.; Rauh, M.J.; Kaminski, T.W.; Underwood, F.B. Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. J. Orthop. Sports Phys. Ther. 2006, 36, 911–919. [Google Scholar] [CrossRef]
- Stiffler, M.R.; Sanfilippo, J.L.; Brooks, M.A.; Heiderscheit, B.C. Star Excursion Balance Test Performance Varies by Sport in Healthy Division I Collegiate Athletes. J. Orthop. Sports Phys. Ther. 2015, 45, 772–780. [Google Scholar] [CrossRef]
- McCann, R.S.; Kosik, K.B.; Beard, M.Q.; Terada, M.; Pietrosimone, B.G.; Gribble, P.A. Variations in Star Excursion Balance Test Performance Between High School and Collegiate Football Players. J. Strength Cond. Res. 2015, 29, 2765–2770. [Google Scholar] [CrossRef] [Green Version]
- Gonell, A.C.; Romero, J.A.; Soler, L.M. Relationship between the Y Balance Test Scores and Soft Tissue Injury Incidence in a Soccer Team. Int. J. Sports Phys. Ther. 2015, 10, 955–966. [Google Scholar]
- McCall, A.; Carling, C.; Nedelec, M.; Davison, M.; Le Gall, F.; Berthoin, S.; Dupont, G. Risk factors, testing and preventative strategies for non-contact injuries in professional football: Current perceptions and practices of 44 teams from various premier leagues. Br. J. Sports Med. 2014, 48, 1352–1357. [Google Scholar] [CrossRef]
- McCall, A.; Carling, C.; Davison, M.; Nedelec, M.; Le Gall, F.; Berthoin, S.; Dupont, G. Injury risk factors, screening tests and preventative strategies: A systematic review of the evidence that underpins the perceptions and practices of 44 football (soccer) teams from various premier leagues. Br. J. Sports Med. 2015, 49, 583–589. [Google Scholar] [CrossRef]
- Kiesel, K.B.; Butler, R.J.; Plisky, P.J. Prediction of Injury by Limited and Asymmetrical Fundamental Movement Patterns in American Football Players. J. Sport Rehab. 2014, 23, 88–94. [Google Scholar] [CrossRef]
- Kiesel, K.; Plisky, P.J.; Voight, M.L. Can Serious Injury in Professional Football be Predicted by a Preseason Functional Movement Screen? N. Am. J. Sports Phys. Ther. 2007, 2, 147–158. [Google Scholar] [PubMed]
- Dorrel, B.; Long, T.; Shaffer, S.; Myer, G.D. The Functional Movement Screen as a Predictor of Injury in National Collegiate Athletic Association Division II Athletes. J. Athl. Train. 2018, 53, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padua, D.A.; Marshall, S.W.; Boling, M.C.; Thigpen, C.A.; Garrett, W.E., Jr.; Beutler, A.I. The Landing Error Scoring System (LESS) Is a valid and reliable clinical assessment tool of jump-landing biomechanics: The JUMP-ACL study. Am. J. Sports Med. 2009, 37, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- Plisky, P.J.; Gorman, P.P.; Butler, R.J.; Kiesel, K.B.; Underwood, F.B.; Elkins, B. The reliability of an instrumented device for measuring components of the star excursion balance test. N. Am. J. Sports Phys. Ther. 2009, 4, 92–99. [Google Scholar] [PubMed]
- Olmsted, L.C.; Carcia, C.R.; Hertel, J.; Shultz, S.J. Efficacy of the Star Excursion Balance Tests in Detecting Reach Deficits in Subjects With Chronic Ankle Instability. J. Athl. Train. 2002, 37, 501–506. [Google Scholar] [PubMed]
- Gribble, P.A.; Terada, M.; Beard, M.Q.; Kosik, K.B.; Lepley, A.S.; McCann, R.S.; Pietrosimone, B.G.; Thomas, A.C. Prediction of lateral ankle sprains in football players based on clinical tests and body mass index. Am. J. Sports Med. 2016, 44, 460–467. [Google Scholar] [CrossRef]
- Alnahdi, A.H.; Alderaa, A.A.; Aldali, A.Z.; Alsobayel, H. Reference values for the Y Balance Test and the lower extremity functional scale in young healthy adults. J. Phys. Ther. Sci. 2015, 27, 3917–3921. [Google Scholar] [CrossRef] [Green Version]
- Gorman, P.P.; Butler, R.J.; Rauh, M.J.; Kiesel, K.; Plisky, P.J. Differences in dynamic balance scores in one sport versus multiple sport high school athletes. Int. J. Sports Phys. Ther. 2012, 7, 148–153. [Google Scholar]
- Lai, W.C.; Wang, D.; Chen, J.B.; Vail, J.; Rugg, C.M.; Hame, S.L. Lower Quarter Y-Balance Test Scores and Lower Extremity Injury in NCAA Division I Athletes. Orthop. J. Sports Med. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Brumitt, J.; Mattocks, A.; Loew, J.; Lentz, P. Preseason Functional Performance Test Measures Are Associated With Injury in Female College Volleyball Players. J. Sport Rehabil. 2019. [Google Scholar] [CrossRef]
- Brumitt, J.; Nelson, K.; Duey, D.; Jeppson, M.; Hammer, L. Preseason Y Balance Test Scores are not Associated with Noncontact Time-Loss Lower Quadrant Injury in Male Collegiate Basketball Players. Sports (Basel) 2018, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, A.A.; Dischiavi, S.L.; Smoliga, J.M.; Taylor, J.B.; Hegedus, E.J. Association of Lower Quarter Y-Balance Test with lower extremity injury in NCAA Division 1 athletes: An independent validation study. Physiotherapy 2017, 103, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Brumitt, J.; Heiderscheit, B.C.; Manske, R.C.; Niemuth, P.E.; Mattocks, A.; Rauh, M.J. Preseason Functional Test Scores Are Associated With Future Sports Injury in Female Collegiate Athletes. J. Strength Cond. Res. 2018, 32, 1692–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrison, M.; Westrick, R.; Johnson, M.R.; Benenson, J. Association between the functional movement screen and injury development in college athletes. Int. J. Sports Phys. Ther. 2015, 10, 21–28. [Google Scholar] [PubMed]
- Ko, J.; Rosen, A.B.; Brown, C.N. Functional performance tests identify lateral ankle sprain risk: A prospective pilot study in adolescent soccer players. Scand. J. Med. Sci. Sports 2018, 28, 2611–2616. [Google Scholar] [CrossRef] [PubMed]
Variable | Total (n = 59) Mean ± SD | Non-contact LQ injury (n = 16) Mean ± SD | Without non-contact LQ injury (n = 43) Mean ± SD | t | p-Value * |
---|---|---|---|---|---|
Age (y) | 20.8 ± 1.3 | 20.8 ± 1.2 | 20.8 ± 1.4 | −0.55 | 0.96 |
Height (m) | 1.8 ± 0.1 | 1.8 ± 0.1 | 1.8 ± 0.1 | 0.99 | 0.33 |
Body mass (kg) | 94.6 ± 14.2 | 86.3 ± 7.5 | 97.6 ± 14.9 | 2.88 | 0.006 |
BMI (kg/m2) | 28.3 ± 3.7 | 26.3 ± 2.8 | 29.1 ± 3.8 | 2.65 | 0.01 |
Percentage with prior injury Percentage of team starters | 79.7% 42.4% | 87.5% 31.3% | 76.7% 46.5% | 0.36 0.29 |
Total (n = 59) | Non-contact LQ injury (n = 16) | Without non-contact LQ injury (n = 43) | |||
---|---|---|---|---|---|
Variable | Mean ± SD | Mean ± SD | Mean ± SD | t | p-Value * |
Limb length right (cm) | 95.0±5.0 | 94.4 ± 5.6 | 95.2 ± 4.9 | 0.54 | 0.59 |
Limb length left (cm) | 95.0±4.8 | 94.6 ± 5.6 | 95.1 ± 4.6 | 0.50 | 0.69 |
YBT-LQ normalized reach distance (% of limb length) | |||||
Anterior R | 65.0 ± 8.8 | 63.7 ± 8.5 | 65.4 ± 9.0 | 0.69 | 0.50 |
Anterior L | 66.3 ± 8.8 | 64.3 ± 8.9 | 67.0 ± 8.8 | 1.06 | 0.29 |
Posteromedial R | 116.9 ± 12.3 | 114.0 ± 13.7 | 118.0 ± 11.8 | 1.10 | 0.28 |
Posteromedial L | 119.8 ± 11.7 | 116.8 ± 10.9 | 120.9 ± 11.9 | 1.20 | 0.24 |
Posterolateral R | 112.5 ± 13.6 | 109.0 ± 11.6 | 113.8 ± 14.1 | 1.22 | 0.23 |
Posterolateral L | 109.7 ± 13.4 | 107.4 ± 11.4 | 110.6 ± 14.1 | 0.83 | 0.41 |
Composite R | 98.1 ± 9.2 | 95.6 ± 8.6 | 99.1 ± 9.3 | 1.32 | 0.19 |
Composite L | 98.6 ± 9.0 | 96.1 ± 7.9 | 99.5 ± 9.3 | 1.28 | 0.20 |
Bilateral Composite | 98.3 ± 8.9 | 95.8 ± 8.0 | 99.3 ± 9.1 | 1.33 | 0.19 |
Absolute reach difference between R and L (cm) | |||||
Anterior | 3.9 ± 3.4 | 4.0 ± 3.3 | 3.9 ± 3.2 | −0.09 | 0.93 |
Posteromedial | 4.6 ± 3.4 | 5.3 ± 3.5 | 4.4 ± 3.3 | −0.89 | 0.38 |
Posterolateral | 5.9 ± 4.6 | 5.4 ± 4.5 | 6.1 ± 4.7 | 0.45 | 0.66 |
Composite | 4.8 ± 2.1 | 4.9 ± 2.2 | 4.8 ± 2.1 | −0.19 | 0.85 |
Variable | N at Risk | (% injured) * | Odds Ratio | (95% CI) |
---|---|---|---|---|
Butler et al. cut point † | ||||
Composite ≥89.6% of limb length | 49 | (24.5) | 1.00 | Ref |
Composite <89.6% of limb length | 10 | (40.0) | 2.06 | (0.50–8.52) |
Lowest quartile relative to other three quartiles | ||||
Composite ≥91.1% of limb length | 45 | (22.2) | 1.00 | Ref |
Composite <91.1% of limb length | 14 | (42.6) | 2.63 | (0.74-9.35) |
Lowest quartiles relative to highest quartile | ||||
Composite ≥105.0% of limb length | 16 | (12.5) | 1.00 | Ref |
Composite <91.1% of limb length | 15 | (40.0) | 4.67 | (0.77–28.41) |
Anterior reach difference ≤4 cm | 39 | (25.6) | 1.00 | Ref |
Anterior reach difference >4 cm | 20 | (30.0) | 1.24 | (0.38–4.11) |
Posteromedial reach difference ≤4 cm | 31 | (19.4) | 1.00 | Ref |
Posteromedial reach difference >4 cm | 28 | (35.7) | 2.32 | (0.71–7.53) |
Posterolateral reach difference ≤4 cm | 27 | (29.6) | 1.00 | Ref |
Posterolateral reach difference >4 cm | 32 | (25.0) | 0.79 | (0.25–2.5) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luedke, L.E.; Geisthardt, T.W.; Rauh, M.J. Y-Balance Test Performance Does Not Determine Non-Contact Lower Quadrant Injury in Collegiate American Football Players. Sports 2020, 8, 27. https://doi.org/10.3390/sports8030027
Luedke LE, Geisthardt TW, Rauh MJ. Y-Balance Test Performance Does Not Determine Non-Contact Lower Quadrant Injury in Collegiate American Football Players. Sports. 2020; 8(3):27. https://doi.org/10.3390/sports8030027
Chicago/Turabian StyleLuedke, Lace E., Turner W. Geisthardt, and Mitchell J. Rauh. 2020. "Y-Balance Test Performance Does Not Determine Non-Contact Lower Quadrant Injury in Collegiate American Football Players" Sports 8, no. 3: 27. https://doi.org/10.3390/sports8030027
APA StyleLuedke, L. E., Geisthardt, T. W., & Rauh, M. J. (2020). Y-Balance Test Performance Does Not Determine Non-Contact Lower Quadrant Injury in Collegiate American Football Players. Sports, 8(3), 27. https://doi.org/10.3390/sports8030027