The Effects of Chest Wall Loading on Perceptions of Fatigue, Exercise Performance, Pulmonary Function, and Muscle Perfusion
Abstract
:1. Introduction
2. Methods
2.1. Participants and General Procedures
2.2. Experimental Design
2.3. Experimental Visits
2.4. Data Analysis
3. Results
3.1. Participants Characteristics
3.2. Pulmonary Function
3.3. Performance
3.4. Perceptions of Fatigue
3.5. Cardiorespiratory and Metabolic Responses to Exercise
3.6. Near Infrared Spectroscopy
4. Discussion
4.1. Effect of CWL + R on Pulmonary Function
4.2. Effect of CWL+R on the Cardiorespiratory Responses
4.3. Effect of CWL + R on Metabolic and Hemodynamic Matching
4.4. Effect of CWL + R on Perception of Fatigue and Performance
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Bf | breathing frequency |
BMI | body mass index |
CWL | chest wall loading |
CWL+R | chest wall loading with restriction |
DeoxHb | deoxyhemoglobin |
EELV | end-expiratory lung |
EFL | expiratory flow limitation |
EILV | end-inspiratory lung volume |
FEV1 | forced expiratory volume in one second |
FVC | forced vital capacity |
Hbtot | total hemoglobin content |
HR | heart rate |
LC | load carriage |
MVC | maximum voluntary contractions |
NIRS | near infrared spectroscopy |
OxyHb | oxygenated hemoglobin |
PO | power output |
RER | respiratory exchange ratio |
RPE | total body ratings of perceived exertion |
RPEdyspnea | dyspnea |
RPEleg | leg RPE |
RPM | revolutions per minute |
StO2 | tissue saturation |
TT | time trial |
VAS | visual analog scale |
VCO2 | carbon dioxide production |
VE | pulmonary ventilation |
VE/VCO2 | ventilatory equivalent for carbon dioxide |
VE/VO2 | ventilatory equivalent for oxygen |
VO2 | O2 uptake |
VT | tidal volume |
References
- Knapik, J.; Harman, E.; Reynolds, K. Load carriage using packs: A review of physiological, biomechanical and medical aspects. Appl. Ergon. 1996, 27, 207–216. [Google Scholar] [CrossRef]
- Birrell, S.A.; Haslam, R.A. The effect of load distribution within military load carriage systems on the kinetics of human gait. Appl. Ergon. 2010, 41, 585–590. [Google Scholar] [CrossRef]
- Boffey, D.; Harat, I.; Gepner, Y.; Frosti, C.L.; Funk, S.; Hoffman, J.R. The physiology and biomechanics of load carriage performance. Mil. Med. 2019, 184, e83–e90. [Google Scholar] [CrossRef] [Green Version]
- Muza, S.; Latzka, A.; Epstein, Y.; Pandolf, K. Load carriage induced alterations of pulmonary function. Int. J. Ind. Ergon. 1989, 3, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.I.; McConnell, A.K. Respiratory-related limitations in physically demanding occupations. Aviat. Space Environ. Med. 2012, 83, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Dominelli, P.B.; Sheel, A.W.; Foster, G.E. Effect of carrying a weighted backpack on lung mechanics during treadmill walking in healthy men. Eur. J. Appl. Physiol. 2012, 112, 2001–2012. [Google Scholar] [CrossRef] [PubMed]
- Lesniak, A.Y.; Bergstrom, H.C.; Clasey, J.L.; Stromberg, A.J.; Abel, M.G. The effect of personal protective equipment on firefighter occupational performance. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faghy, M.A.; Brown, P.I. Thoracic load carriage-induced respiratory muscle fatigue. Eur. J. Appl. Physiol. 2014, 114, 1085–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younes, M.; Kivinen, G. Respiratory mechanics and breathing pattern during and following maximal exercise. J. Appl. Physiol. 1984, 57, 1773–1782. [Google Scholar] [CrossRef]
- Sharratt, M.T.; Henke, K.G.; Aaron, E.A.; Pegelow, D.F.; Dempsey, J.A. Exercise-induced changes in functional residual capacity. Respir. Physiol. 1987, 70, 313–326. [Google Scholar] [CrossRef]
- Henke, K.G.; Sharratt, M.; Pegelow, D.; Dempsey, J.A. Regulation of end-expiratory lung volume during exercise. J. Appl. Physiol. 1988, 64, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Guenette, J.A.; Witt, J.D.; McKenzie, D.C.; Road, J.D.; Sheel, A.W. Respiratory mechanics during exercise in endurance-trained men and women. J. Physiol. 2007, 581, 1309–1322. [Google Scholar] [CrossRef] [PubMed]
- Weavil, J.C.; Duke, J.W.; Stickford, J.L.; Stager, J.M.; Chapman, R.F.; Mickleborough, T.D. Endurance exercise performance in acute hypoxia is influenced by expiratory flow limitation. Eur. J. Appl. Physiol. 2015, 115, 1653–1663. [Google Scholar] [CrossRef] [PubMed]
- Nadiv, Y.; Vachbroit, R.; Gefen, A.; Zaretsky, U.; Moran, D.; Halpern, P.; Ratnovsky, A. Evaluation of fatigue of respiratory and lower limb muscles during prolonged aerobic exercise. J. Appl. Biomech. 2012, 28, 139–147. [Google Scholar] [CrossRef]
- Romer, L.M.; Polkey, M.I. Exercise-induced respiratory muscle fatigue: Implications for performance. J. Appl. Physiol. (1985) 2008, 104, 879–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coast, J.R.; Cline, C.C. The effect of chest wall restriction on exercise capacity. Respirology 2004, 9, 197–203. [Google Scholar] [CrossRef]
- Gonzalez, J.; Coast, J.R.; Lawler, J.M.; Welch, H.G. A chest wall restrictor to study effects on pulmonary function and exercise. 2. The energetics of restrictive breathing. Respiration 1999, 66, 188–194. [Google Scholar] [CrossRef]
- Armstrong, N.C.D.; Ward, A.; Lomax, M.; Tipton, M.J.; House, J.R. Wearing body armour and backpack loads increase the likelihood of expiratory flow limitation and respiratory muscle fatigue during marching. Ergonomics 2019, 62, 1181–1192. [Google Scholar] [CrossRef] [Green Version]
- Harms, C.A.; Babcock, M.A.; McClaran, S.R.; Pegelow, D.F.; Nickele, G.A.; Nelson, W.B.; Dempsey, J.A. Respiratory muscle work compromises leg blood flow during maximal exercise. J. Appl. Physiol. 1997, 82, 1573–1583. [Google Scholar] [CrossRef] [Green Version]
- Mentiplay, B.F.; Perraton, L.G.; Bower, K.J.; Adair, B.; Pua, Y.-H.; Williams, G.P.; McGaw, R.; Clark, R.A. Assessment of lower limb muscle strength and power using hand-held and fixed dynamometry: A reliability and validity study. PLoS ONE 2015, 10, e0140822. [Google Scholar] [CrossRef] [Green Version]
- Amann, M.; Venturelli, M.; Ives, S.J.; McDaniel, J.; Layec, G.; Rossman, M.J.; Richardson, R.S. Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. J. Appl. Physiol. (1985) 2013, 115, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Malmberg, L.P.; Hedman, J.; Sovijärvi, A.R. Accuracy and repeatability of a pocket turbine spirometer: Comparison with a rolling seal flow-volume spirometer. Clin. Physiol. 1993, 13, 89–98. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.A.; Watras, A.C.; O’Brien, M.J.; Luke, A.; Dobratz, J.R.; Earthman, C.P.; Schoeller, D.A. Assessing validity and reliability of resting metabolic rate in six gas analysis systems. J. Am. Diet. Assoc. 2009, 109, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Bijur, P.E.; Silver, W.; Gallagher, E.J. Reliability of the visual analog scale for measurement of acute pain. Acad. Emerg. Med. 2001, 8, 1153–1157. [Google Scholar] [CrossRef]
- Eston, R.G.; Williams, J.G. Reliability of ratings of perceived effort regulation of exercise intensity. Br. J. Sports Med. 1988, 22, 153–155. [Google Scholar] [CrossRef] [Green Version]
- Aliverti, A. The respiratory muscles during exercise. Breathe (Sheff) 2016, 12, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Tomczak, S.E.; Guenette, J.A.; Reid, W.D.; McKenzie, D.C.; Sheel, A.W. Diaphragm fatigue after submaximal exercise with chest wall restriction. Med. Sci. Sports Exerc. 2011, 43, 416–424. [Google Scholar] [CrossRef]
- Wang, L.Y.; Cerny, F.J. Ventilatory response to exercise in simulated obesity by chest loading. Med. Sci. Sports Exerc. 2004, 36, 780–786. [Google Scholar] [CrossRef]
- Vogiatzis, I.; Athanasopoulos, D.; Habazettl, H.; Aliverti, A.; Louvaris, Z.; Cherouveim, E.; Wagner, H.; Roussos, C.; Wagner, P.D.; Zakynthinos, S. Intercostal muscle blood flow limitation during exercise in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010, 182, 1105–1113. [Google Scholar] [CrossRef]
- Rossman, M.J.; Venturelli, M.; McDaniel, J.; Amann, M.; Richardson, R.S. Muscle mass and peripheral fatigue: A potential role for afferent feedback? Acta Physiol. 2012, 206, 242–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, S.N.; Pardy, R.L. Inspiratory muscle function with restrictive chest wall loading during exercise in normal humans. J. Appl. Physiol. (1985) 1985, 58, 2027–2032. [Google Scholar] [CrossRef] [PubMed]
- Dominelli, P.B.; Archiza, B.; Ramsook, A.H.; Mitchell, R.A.; Peters, C.M.; Molgat-Seon, Y.; Henderson, W.R.; Koehle, M.S.; Boushel, R.; Sheel, A.W. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise. Exp. Physiol. 2017, 102, 1535–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, D.B.; Stickland, M.K.; Petersen, S.R. Ventilatory responses to prolonged exercise with heavy load carriage. Eur. J. Appl. Physiol. 2016, 116, 19–27. [Google Scholar] [CrossRef]
- Phillips, D.B.; Stickland, M.K.; Lesser, I.A.; Petersen, S.R. The effects of heavy load carriage on physiological responses to graded exercise. Eur. J. Appl. Physiol. 2016, 116, 275–280. [Google Scholar] [CrossRef]
Variable | Baseline | Cohen’s d | Peak | Cohen’s d | ||
---|---|---|---|---|---|---|
CWL + R | Control | CWL + R | Control | |||
VT, L/min | 2.1 ± 0.6 | 2.2 ± 0.6 | 0.18 | 3.3 ± 0.6 † | 3.4 ± 0.7 † | 0.06 |
VE, L/min | 47.5 ± 10.8 | 48.5 ± 10.8 | 0.1 | 133.0 ± 29.0 † | 135.9 ± 31.9 † | 0.14 |
VO2, L/min | 2.2 ± 0.4 | 2.2 ± 0.4 | 0.02 | 4.1 ± 0.6 † | 4.1 ± 0.6 † | 0.23 |
VO2, mL/kg/min | 27.2 ± 4.0 | 27.3 ± 3.7 | 0.02 | 50.8 ± 6.4 † | 50.8 ± 7.2 † | 0.23 |
VCO2, L/min | 2.1 ± 0.4 | 2.1 ± 0.7 | 0.14 | 4.6 ± 0.6 † | 4.6 ± 0.8 † | 0.13 |
VCO2, mL/kg/min | 25.5 ± 4.8 | 24.5 ± 6.2 | 0.14 | 57.2 ± 7.8 † | 57.4 ± 7.6 † | 0.13 |
RER | 0.88 ± 0.10 | 0.87 ± 0.10 | 0.03 | 1.17 ± 0.05 † | 1.17 ± 0.05 † | 0.08 |
VE/VO2 | 21.7 ± 3.2 | 21.8 ± 3.0 | 0.01 | 31.3 ± 8.3 † | 33.1 ± 4.8 † | 0.30 |
VE/VCO2 | 23.6 ± 4.7 | 24.4 ± 4.2 | 0.21 | 29.9 ± 5.4 † | 30.3 ± 4.6 † | 0.09 |
Bf, breaths/min | 18 ± 1 | 18 ± 1 | 0.1 | 37 ± 3 † | 37 ± 4 † | 0.09 |
FatigueVAS (mm) | 13 ± 10 | 9 ± 11 | 0.41 | 78 ± 14† | 75 ± 17 † | 0.18 |
RPEleg | 2.3 ± 0.9 | 2.7 ± 1.0 | 0.41 | 6.9 ± 1.5 † | 7.3 ± 1.6 † | 0.15 |
RPEdyspnea | 1.6 ± 0.8 | 1.6 ± 0.8 | 0.00 | 5.8 ± 1.7 † | 6.0 ± 1.7 † | 0.12 |
RPEtot | 2.0 ± 0.7 | 2.2 ± 0.9 | 0.31 | 6.9 ± 1.2 † | 6.8 ± 1.4 † | 0.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuriato, G.; Gundersen, A.; Verma, S.; Pelletier, E.; Bakewell, B.; Ives, S.J. The Effects of Chest Wall Loading on Perceptions of Fatigue, Exercise Performance, Pulmonary Function, and Muscle Perfusion. Sports 2020, 8, 3. https://doi.org/10.3390/sports8010003
Giuriato G, Gundersen A, Verma S, Pelletier E, Bakewell B, Ives SJ. The Effects of Chest Wall Loading on Perceptions of Fatigue, Exercise Performance, Pulmonary Function, and Muscle Perfusion. Sports. 2020; 8(1):3. https://doi.org/10.3390/sports8010003
Chicago/Turabian StyleGiuriato, Gaia, Anders Gundersen, Sarina Verma, Ethan Pelletier, Brock Bakewell, and Stephen J. Ives. 2020. "The Effects of Chest Wall Loading on Perceptions of Fatigue, Exercise Performance, Pulmonary Function, and Muscle Perfusion" Sports 8, no. 1: 3. https://doi.org/10.3390/sports8010003
APA StyleGiuriato, G., Gundersen, A., Verma, S., Pelletier, E., Bakewell, B., & Ives, S. J. (2020). The Effects of Chest Wall Loading on Perceptions of Fatigue, Exercise Performance, Pulmonary Function, and Muscle Perfusion. Sports, 8(1), 3. https://doi.org/10.3390/sports8010003