Individual Adaptation in Cross-Country Skiing Based on Tracking during Training Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Maximum Rate of Oxygen Consumption during the Incremental Exercise Test (VO2max)
2.4. Training Monitoring
2.5. Training Periodization
2.6. Basic Functional Analysis
2.7. Secondary Measurements
2.8. Analysis
3. Results
3.1. Effort Capacity
3.2. Training Effort Analysis
3.3. Basic Functional Evaluation Data
4. Discussion
4.1. Physiological Induced Changes
4.2. Resting Heart Rate Measurement and Training
4.3. Blood Pressure and Mean Arterial Pressure Resting Measurements and Training
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martindale, R.; Nash, C. Sport Science Relevance and Application: Perceptions of UK Coaches. J. Sports Sci. 2013, 31, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Semin, K.; Stahlnecker, A.C., IV; Heelan, K.; Brown, G.A.; Shaw, B.S.; Shaw, I. Discrepancy between Training, Competition and Laboratory Measures of Maximum Heart Rate in NCAA Division 2 Distance Runners. J. Sport Sci. Med. 2008, 7, 455–460. [Google Scholar]
- Lindenthaler, J.R.; Rice, A.J.; Versey, N.G.; McKune, A.J.; Welvaert, M. Differences in Physiological Responses During Rowing and Cycle Ergometry in Elite Male Rowers. Front. Physiol. 2018, 9, 1010. [Google Scholar] [CrossRef] [PubMed]
- Green, D.J.; Hopman, M.T.E.; Padilla, J.; Laughlin, M.H.; Thijssen, D.H.J. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol. Rev. 2017, 97, 495–528. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, M.H.; Roseguini, B. Mechanisms for Exercise Training-Induced Increases in Skeletal Muscle Blood Flow Capacity: Differences with Interval Sprint Training versus Aerobic Endurance Training. J. Physiol. Pharmacol. 2008, 59, 71–88. [Google Scholar] [PubMed]
- Sloan, R.P.; Shapiro, P.A.; DeMeersman, R.E.; Bagiella, E.; Brondolo, E.N.; McKinley, P.S.; Slavov, I.; Fang, Y.; Myers, M.M. The effect of aerobic training and cardiac autonomic regulation in young adults. Am. J. Public Health, 2009; 99, 921–928. [Google Scholar] [CrossRef]
- Dong, J.G. The Role of Heart Rate Variability in Sports Physiology (Review). Exp. Ther. Med. 2016, 11, 1531–1536. [Google Scholar] [CrossRef] [PubMed]
- Suzic Lazic, J.; Dekleva, M.; Soldatovic, I.; Leischik, R.; Suzic, S.; Radovanovic, D.; Djuric, B.; Nesic, D.; Lazic, M.; Mazic, S. Heart Rate Recovery in Elite Athletes: The Impact of Age and Exercise Capacity. Clin. Physiol. Funct. Imaging 2017, 37, 117–123. [Google Scholar] [CrossRef]
- Sammito, S.; Böckelmann, I. Factors Influencing Heart Rate Variability. Int. Cardiovasc. Forum J. 2016, 11, e32–e40. [Google Scholar] [CrossRef]
- Fatisson, J.; Oswald, V.; Lalonde, F. Influence Diagram of Physiological and Environmental Factors Affecting Heart Rate Variability: An Extended Literature Overview. Heart Int. 2016, 11, e32–e40. [Google Scholar] [CrossRef]
- Wielemborek-Musial, K.; Szmigielska, K.; Leszczynska, J.; Jegier, A. Blood Pressure Response to Submaximal Exercise Test in Adults. BioMed Res. Int. 2016, 3, 176–187. [Google Scholar] [CrossRef]
- Sharman, J.E.; Lagerche, A. Exercise Blood Pressure: Clinical Relevance and Correct Measurement. J. Hum. Hypertens. 2015, 29, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Farl, C.V.; Guidotti, F.; Harbin, M.; Roberts, B.; Schuette, J.; Tuuri, A.; Doberstein, S.T.; Porcari, J.P. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity. J. Sport Sci. Med. 2015, 14, 747–755. [Google Scholar]
- Bellenger, C.R.; Thomson, R.L.; Howe, P.R.C.; Karavirta, L.; Buckley, J.D. Monitoring Athletic Training Status Using the Maximal Rate of Heart Rate Increase. J. Sci. Med. Sport 2016, 19, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.; Hanakam, F.; Wiewelhove, T.; Döweling, A.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; Ferrauti, A. Heart Rate Monitoring in Team Sports—A Conceptual Framework for Contextualizing Heart Rate Measures for Training and Recovery Prescription. Front. Physiol. 2018, 9, 639. [Google Scholar] [CrossRef]
- Reimers, A.; Knapp, G.; Reimers, C.-D. Effects of Exercise on the Resting Heart Rate: A Systematic Review and Meta—Analysis of Interventional Studies. J. Clin. Med. 2018, 7, 503. [Google Scholar] [CrossRef]
- Sylta, Ø.; Tønnessen, E.; Hammarström, D.; Danielsen, J.; Skovereng, K.; Ravn, T.; Rønnestad, B.R.; Sandbakk, Ø.; Seiler, S. The Effect of Different High-Intensity Periodization Models on Endurance Adaptations. Med. Sci. Sports Exerc. 2016, 48, 2165–2174. [Google Scholar] [CrossRef] [Green Version]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef]
- Seiler, S. What Is Best Practice for Training Intensity and Duration Distribution in Endurance Athletes? Int. J. Sports Physiol. Perform. 2010, 5, 276–291. [Google Scholar] [CrossRef]
- Noonan, V.; Dean, E. Submaximal exercise testing: Clinical application and interpretation. Phys. Ther. 2000, 80, 782–807. [Google Scholar]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A New Method for Detecting Anaerobic Threshold by Gas Exchange. J. Appl. Physiol. 2017, 60, 2020–2027. [Google Scholar] [CrossRef]
- Shahbabu, B.; Dasgupta, A.; Sarkar, K.; Sahoo, S.K. Which Is More Accurate in Measuring the Blood Pressure? A Digital or an Aneroid Sphygmomanometer. J. Clin. Diagn. Res. 2016, 10, LC11–LC14. [Google Scholar] [CrossRef]
- Dziuda, Ł.; Krej, M.; Śmietanowski, M.; Sobotnicki, A.; Sobiech, M.; Kwaśny, P.; Brzozowska, A.; Baran, P.; Kowalczuk, K.; Skibniewski, F.W. Development and Evaluation of a Novel System for Inducing Orthostatic Challenge by Tilt Tests and Lower Body Negative Pressure. Sci. Rep. 2018, 8, 7793. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, R. Blood Pressure Measurement. Essent. Clin. Proced. 2007. [Google Scholar] [CrossRef]
- Wan, J.J.; Qin, Z.; Wang, P.Y.; Sun, Y.; Liu, X. Muscle Fatigue: General Understanding and Treatment. Exp. Mol. Med. 2017, 49, e384. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Joseph, K.P.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart Rate Variability: A Review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Sato, H.; Hori, M.; Kusuoka, H.; Ozaki, H.; Yokoyama, H.; Takeda, H.; Inoue, M.; Kamada, T. Vagally Mediated Heart Rate Recovery after Exercise Is Accelerated in Athletes but Blunted in Patients with Chronic Heart Failure. J. Am. Coll. Cardiol. 1994, 24, 1529–1535. [Google Scholar] [CrossRef]
- Niewiadomski, W.; Gasiorowska, A.; Krauss, B.; Mróz, A.; Cybulski, G. Suppression of Heart Rate Variability after Supramaximal Exertion. Clin. Physiol. Funct. Imaging 2007, 27, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Grace, F.; Herbert, P.; Elliott, A.D.; Richards, J.; Beaumont, A.; Sculthorpe, N.F. High Intensity Interval Training (HIIT) Improves Resting Blood Pressure, Metabolic (MET) Capacity and Heart Rate Reserve without Compromising Cardiac Function in Sedentary Aging Men. Exp. Gerontol. 2018, 109, 75–81. [Google Scholar] [CrossRef]
- Riebe, D.; Franklin, B.A.; Thompson, P.D.; Garber, C.E.; Whitfield, G.P.; Magal, M.; Pescatello, L.S. Updating ACSM’s Recommendations for Exercise Preparticipation Health Screening. Med. Sci. Sports Exerc. 2015, 47, 2473–2479. [Google Scholar] [CrossRef]
- Guimarães, G.V.; Ciolac, E.G.; Carvalho, V.O.; D’Avila, V.M.; Bortolotto, L.A.; Bocchi, E.A. Effects of Continuous vs. Interval Exercise Training on Blood Pressure and Arterial Stiffness in Treated Hypertension. Hypertens. Res. 2010, 33, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Mont, L.; Elosua, R.; Brugada, J. Endurance Sport Practice as a Risk Factor for Atrial Fibrillation and Atrial Flutter. Europace 2009, 11, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.J.; Thomson, R.L.; Rogers, D.K.; Howe, P.R.C.; Buckley, J.D. Maximal Rate of Increase in Heart Rate during the Rest-Exercise Transition Tracks Reductions in Exercise Performance When Training Load Is Increased. J. Sci. Med. Sport 2014, 17, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Berge, H.M.; Isern, C.B.; Berge, E. Blood Pressure and Hypertension in Athletes: A Systematic Review. Br. J. Sports Med. 2015, 49, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Shahraki, M.R.; Mirshekari, H.; Shahraki, A.R.; Shahraki, E.; Naroi, M. Arterial Blood Pressure in Female Students before, during and after Exercise. ARYA Atheroscler. 2012, 8, 12–15. [Google Scholar] [PubMed]
- Cornelissen, V.A.; Verheyden, B.; Aubert, A.E.; Fagard, R.H. Effects of Aerobic Training Intensity on Resting, Exercise and Post-Exercise Blood Pressure, Heart Rate and Heart-Rate Variability. J. Hum. Hypertens. 2010, 24, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.-J.; Hong, H.-O.; Lee, B.-A. The Effects of Strenuous Exercises on Resting Heart Rate, Blood Pressure, and Maximal Oxygen Uptake. J. Exerc. Rehabil. 2016, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Fagard, R. Athlete’s Heart. Heart 2003, 12, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Bellenger, C.R.; Fuller, J.T.; Thomson, R.L.; Davison, K.; Robertson, E.Y.; Buckley, J.D. Monitoring Athletic Training Status Through Autonomic Heart Rate Regulation: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 1461–1486. [Google Scholar] [CrossRef]
- Thomson, R.L.; Bellenger, C.R.; Howe, P.R.C.; Karavirta, L.; Buckley, J.D. Improved Heart Rate Recovery despite Reduced Exercise Performance Following Heavy Training: A within-Subject Analysis. J. Sci. Med. Sport 2016, 19, 255–259. [Google Scholar] [CrossRef]
- Guerra, Z.F.; Peçanha, T.; Moreira, D.N.; Silva, L.P.; Laterza, M.C.; Nakamura, F.Y.; Lima, J.R.P. Effects of Load and Type of Physical Training on Resting and Postexercise Cardiac Autonomic Control. Clin. Physiol. Funct. Imaging 2014, 34, 114–120. [Google Scholar] [CrossRef]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T.; et al. Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanssen, H.; Minghetti, A.; Magon, S.; Rossmeissl, A.; Papadopoulou, A.; Klenk, C.; Schmidt-Trucksäss, A.; Faude, O.; Zahner, L.; Sprenger, T.; et al. Superior Effects of High-Intensity Interval Training vs. Moderate Continuous Training on Arterial Stiffness in Episodic Migraine: A Randomized Controlled Trial. Front. Physiol. 2017, 8, 1086. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-A.; Oh, D.-J. The Effects of Long-Term Aerobic Exercise on Cardiac Structure, Stroke Volume of the Left Ventricle, and Cardiac Output. J. Exerc. Rehabil. 2016, 12, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Kelley, G.A.; Kelley, K.A.; Vu Tran, Z. Aerobic Exercise and Resting Blood Pressure: A Meta-Analytic Review of Randomized, Controlled Trials. Prev. Cardiol. 2001, 4, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, V.A.; Fagard, R.H. Effects of Endurance Training on Blood Pressure, Blood Pressure-Regulating Mechanisms, and Cardiovascular Risk Factors. Hypertension 2005, 46, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Green, D.J.; Spence, A.; Rowley, N.; Thijssen, D.H.J.; Naylor, L.H. Vascular Adaptation in Athletes: Is There an “Athlete’s Artery”? Exp. Physiol. 2012, 97, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Mazic, S.; Suzic Lazic, J.; Dekleva, M.; Antic, M.; Soldatovic, I.; Djelic, M.; Nesic, D.; Acimovic, T.; Lazic, M.; Lazovic, B.; et al. The Impact of Elevated Blood Pressure on Exercise Capacity in Elite Athletes. Int. J. Cardiol. 2015, 180, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Boudet, G.; Garet, M.; Bedu, M.; Albuisson, E.; Chamoux, A. Median Maximal Heart Rate for Heart Rate Calibration in Different Conditions: Laboratory, Field and Competition. Int. J. Sports Med. 2002, 23, 290–297. [Google Scholar] [CrossRef]
- McDonald, K.G.; Grote, S.; Shoepe, T.C. Effect of Training Mode on Post-Exercise Heart Rate Recovery of Trained Cyclists. J. Hum. Kinet. 2014, 41, 43–49. [Google Scholar] [CrossRef] [Green Version]
Information Related to One Individual Training Session | Mean Value (Min to Max) | Statistical Data between T1 and T2 | ||
---|---|---|---|---|
T1 | T2 | p | r | |
Distance, km | 28.23 | 10.83 | 0.51 | 0.05 |
(9.22–52.26) | (2.09–22.55) | |||
Time, minute | 129.3 | 63.66 | 0.01 | 0.31 |
(24.17–208) | (15.52–130.5) | |||
Positive altitude gain, m | 430.5 | 232.5 | 0.007 | 0.26 |
(35–1115) | (10–965) | |||
Negative altitude gain, m | 390 | 162.7 | 0.01 | 0.24 |
(47.78–94) | (0–650) | |||
HR % | 69.75 | 65.56 | 0.0014 | 0.19 |
(59–100) | (55–92.13) | |||
Z1, % | 4.9 (0–78) | 2.2 (0–85) | 0.06 | 0.15 |
Z2, % | 6.1 (0–88) | 6.2 (0–86) | 0.01 | 0.37 |
Z3, % | 4.1 (0–77) | 5.9 (0–76) | 0.01 | –0.31 |
Z4, % | 26.4 (0–87) | 18.6 (0–91) | 0.02 | –0.30 |
Z5, % | 58.5 (0–100) | 67.1 (0–100) | 0.046 | 0.16 |
Crampton Index Mean Value | Training Data Mean Value | Statistical Result | ||||
---|---|---|---|---|---|---|
p | r | CI95% | ||||
Upper | Lower | |||||
101.5 | T1 training data | |||||
Distance, km | 28.23 (9.22–52.26) | 0.008 | −0.19 | −0.33 | −0.04 | |
Time, minute | 129.3 (24.17–208) | 0.07 | −0.13 | −0.27 | 0.01 | |
Pace, km/h | 14.15 (8.5–25.2) | 0.33 | −0.07 | −0.22 | 0.07 | |
Positive altitude gain, m | 430.5 (35–1115) | 0.012 | −0.20 | −0.35 | −0.03 | |
Negative altitude gain, m | 390 (47.78–94) | 0.02 | −0.18 | −0.34 | −0.02 | |
HR % | 69.75 (59–100) | 0.0007 | 0.30 | 0.15 | 0.43 | |
Z1, % | 4.9 (0–78) | 0.6687 | −0.03 | −0.18 | 0.11 | |
Z2, % | 6.1 (0–88) | 0.6863 | −0.03 | −0.18 | 0.12 | |
Z3, % | 4.1 (0–77) | 0.0626 | 0.13 | −0.01 | 0.2 | |
Z4, % | 26.4 (0–87) | 0.0014 | 0.23 | 0.08 | 0.37 | |
Z5, % | 58.5 (0–100) | 0.0009 | −0.24 | −0.38 | −0.09 | |
T2 training data | ||||||
Distance, km | 10.83 (2.09–22.55) | 0.9654 | 0.00 | −0.16 | 0.16 | |
Time, minute | 63.66 (15.52–130.5) | 0.6278 | −0.03 | −0.20 | 0.12 | |
Pace, km/h | 11.28 (7.5–51.5) | 0.0667 | −0.16 | −0.33 | 0.01 | |
Positive altitude gain, m | 232.5 (10–965) | 0.1819 | −0.13 | −0.31 | 0.06 | |
Negative altitude gain, m | 162.7 (0–650) | 0.4968 | –0.06 | –0.25 | 0.13 | |
HR, % | 65.56 (55–92.13) | 0.0438 | 0.16 | –0.00 | 0.32 | |
Z1, % | 2.2 (0–85) | 0.8572 | 0.01 | –0.15 | 0.18 | |
Z2, % | 6.2 (0–86) | 0.7330 | –0.02 | –0.19 | 0.13 | |
Z3, % | 5.9 (0–76) | 0.2283 | –0.09 | –0.26 | 0.06 | |
Z4, % | 18.6 (0–91) | 0.7851 | –0.02 | –0.18 | 0.14 | |
Z5, % | 67.1 (0–100) | 0.5423 | –0.05 | –0.21 | 0.11 |
Parameter 1 Mean Value | Parameter 2 Mean Value | sHR and Parameter 2 Analysis Results | oHR and Parameter 2 Analysis Results | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
sHR, b/min | oHR, b/min | Effort Intensity | p | r | CI95% | p | r | CI95% | |||
Upper | Lower | Upper | Lower | ||||||||
54.25 | 81.34 | T1 training data | |||||||||
Z5, % | 4.9 | 0.015 | −0.18 | −0.32 | −0.03 | 0.012 | −0.18 | −0.33 | −0.03 | ||
Z4, % | 6.1 | 0.0282 | −0.08 | −0.23 | 0.07 | 0.034 | −0.15 | −0.30 | −0.00 | ||
Z3, % | 4.1 | 0.247 | 0.08 | −0.06 | 0.23 | 0.135 | 0.11 | −0.03 | 0.26 | ||
Z2, % | 26.4 | 0.001 | 0.3 | 0.15 | 0.43 | 0.001 | 0.42 | 0.29 | 0.54 | ||
Z1, % | 58 | 0.001 | −0.23 | −0.37 | −0.08 | 0.004 | 0.262 | −0.39 | −0.11 | ||
T2 training data | |||||||||||
Z5, % | 2.2 | 0.023 | 0.18 | 0.02 | 0.34 | 0.002 | 0.24 | 0.08 | 0.39 | ||
Z4, % | 6.2 | 0.012 | 0.20 | 0.04 | 0.36 | 0.001 | 0.33 | 0.17 | 0.47 | ||
Z3, % | 5.9 | 0.046 | 0.16 | −0.002 | 0.32 | 0.005 | −0.28 | 0.12 | 0.43 | ||
Z2, % | 18.6 | 0.044 | 0.16 | −0.00 | 0.32 | 0.011 | 0.21 | 0.04 | 0.36 | ||
Z1, % | 67.1 | 0.007 | −0.22 | −0.37 | −0.05 | 0.003 | −0.29 | −0.44 | −0.13 |
Analysed Parameter | Results | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameter 1 Mean Value | Parameter 2 Mean Value | sSBP and Parameter 2 Analysis Results | oSBP and Parameter 2 Analysis Results | ||||||||
sSBP, mmHg | oSBP, mmHg | Training Zones over T1–T2 Trainings | p | r | CI95% | p | r | CI95% | |||
Upper | Lower | Upper | Lower | ||||||||
112.8 | 117.6 | T1 | |||||||||
Z5, % | 4.9 | 0.067 | 0.06 | −0.09 | 0.22 | 0.0832 | 0.01 | −0.14 | 0.17 | ||
Z4, % | 6.1 | 0.588 | 0.04 | −0.11 | 0.20 | 0.540 | −0.04 | −0.20 | 0.11 | ||
Z3, % | 4.1 | 0.397 | −0.67 | −0.22 | 0.09 | 0.006 | −0.21 | −0.36 | −0.05 | ||
Z2, % | 26.4 | 0.452 | −0.06 | −0.21 | 0.10 | 0.026 | −0.17 | −0.32 | −0.01 | ||
Z1, % | 58 | 0.553 | −0.04 | −0.20 | 0.114 | 0.003 | 0.23 | 0.07 | 0.37 | ||
T2 | |||||||||||
Z5, % | 2.2 | 0.731 | 0.03 | −0.14 | 0.20 | 0.445 | 0.06 | −0.11 | 0.24 | ||
Z4, % | 6.2 | 0.244 | 0.10 | −0.07 | 0.27 | 0.593 | 0.04 | −0.13 | 0.22 | ||
Z3, % | 5.9 | 0.162 | 0.12 | −0.05 | 0.29 | 0.299 | 0.09 | −0.08 | 0.26 | ||
Z2, % | 18.6 | 0.008 | 0.22 | 0.05 | 0.38 | 0.703 | 0.03 | −0.14 | 0.20 | ||
Z1, % | 67.1 | 0.009 | –0.22 | −0.38 | −0.05 | 0.315 | –0.08 | −0.25 | 0.08 |
Analyzed Parameter | Results | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameter 1 Mean Value | Parameter 2 Mean Value | sDBP with Parameter 2 Analysis Results | oDBP with Parameter 2 Analysis Results | ||||||||
sDBP, mmHg | oDBP, mmHg | Training Zones over T1–T2 Trainings | p | r | CI95% | p | r | CI95% | |||
Upper | Lower | Upper | Lower | ||||||||
67 | 79 | T1 | |||||||||
Z5, % | 4.9 | 0.1986 | 0.10 | −0.05 | 0.25 | 0.3240 | 0.07 | −0.08 | 0.23 | ||
Z4, % | 6.1 | 0.1949 | 0.10 | −0.05 | 0.25 | 0.5450 | 0.04 | −0.11 | 0.20 | ||
Z3, % | 4.1 | 0.6372 | −0.12 | −0.12 | 0.19 | 0.0933 | −0.13 | −0.28 | 0.02 | ||
Z2, % | 26.4 | 0.1858 | −010 | −0.26 | 0.05 | 0.1432 | −0.11 | −0.27 | 0.04 | ||
Z1, % | 58 | 0.8644 | −0.01 | −0.17 | 0.14 | 0.1617 | 0.11 | −0.04 | 0.26 | ||
T2 | |||||||||||
Z5, % | 2.2 | 0.5652 | −0.05 | −0.22 | 0.12 | 0.1266 | −0.13 | −0.30 | 0.04 | ||
Z4, % | 6.2 | 0.8553 | 0.01 | −0.15 | 0.18 | 0.6851 | −0.03 | −0.20 | 0.14 | ||
Z3, % | 5.9 | 0.6263 | −0.04 | −0.21 | 0.13 | 0.4646 | 0.06 | −0.11 | 0.23 | ||
Z2, % | 18.6 | 0.7171 | −0.03 | −0.20 | 0.14 | 0.1837 | 0.11 | −0.06 | 0.28 | ||
Z1, % | 67.1 | 0.5209 | 0.05 | −0.11 | 0.22 | 0.8292 | −0.01 | −0.19 | 0.15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, S.A.; Hadmaș, R.M. Individual Adaptation in Cross-Country Skiing Based on Tracking during Training Conditions. Sports 2019, 7, 211. https://doi.org/10.3390/sports7090211
Martin SA, Hadmaș RM. Individual Adaptation in Cross-Country Skiing Based on Tracking during Training Conditions. Sports. 2019; 7(9):211. https://doi.org/10.3390/sports7090211
Chicago/Turabian StyleMartin, Stefan Adrian, and Roxana Maria Hadmaș. 2019. "Individual Adaptation in Cross-Country Skiing Based on Tracking during Training Conditions" Sports 7, no. 9: 211. https://doi.org/10.3390/sports7090211
APA StyleMartin, S. A., & Hadmaș, R. M. (2019). Individual Adaptation in Cross-Country Skiing Based on Tracking during Training Conditions. Sports, 7(9), 211. https://doi.org/10.3390/sports7090211