Calculating Set-Volume for the Limb Muscles with the Performance of Multi-Joint Exercises: Implications for Resistance Training Prescription
Abstract
:1. Introduction
2. Biomechanical and Physiological Considerations
3. Acute Studies
4. Longitudinal Studies
5. Additional Considerations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stone, M.; Plisk, S.; Collins, D. Training principles: Evaluation of modes and methods of resistance training--A coaching perspective. Sports Biomech. 2002, 1, 79–103. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J. Sports Sci. 2017, 35, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Gentil, P.; Fisher, J.; Steele, J. A Review of the Acute Effects and Long-Term Adaptations of Single- and Multi-Joint Exercises during Resistance Training. Sports Med. 2017, 47, 843–855. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.S.; Schoenfeld, B.J.; Sardinha, L.B. Comment on: “A Review of the Acute Effects and Long-Term Adaptations of Single- and Multi-Joint Exercises During Resistance Training”. Sports Med. 2017, 47, 791–793. [Google Scholar] [CrossRef] [PubMed]
- Baz-Valle, E.; Fontes-Villalba, M.; Santos-Concejero, J. Total Number of Sets as a Training Volume Quantification Method for Muscle Hypertrophy: A Systematic Review. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, V.C.; de Salles, B.F.; Trajano, G.S. Volume for Muscle Hypertrophy and Health Outcomes: The Most Effective Variable in Resistance Training. Sports Med. 2018, 48, 499–505. [Google Scholar] [CrossRef] [PubMed]
- MacIntosh, B.R. Recent developments in understanding the length dependence of contractile response of skeletal muscle. Eur. J. Appl. Physiol. 2017, 117, 1059–1071. [Google Scholar] [CrossRef]
- MacIntosh, B.R. Role of calcium sensitivity modulation in skeletal muscle performance. Physiology 2003, 18, 222–225. [Google Scholar] [CrossRef]
- Stephenson, D.G.; Williams, D.A. Effectstable of sarcomere length on the force-pCa relation in fast- and slow-twitch skinned muscle fibres from the rat. J. Physiol. 1982, 333, 637–653. [Google Scholar] [CrossRef]
- Holt, N.C.; Azizi, E. What drives activation-dependent shifts in the force-length curve? Biol. Lett. 2014, 10, 20140651. [Google Scholar] [CrossRef]
- Lieber, R.L.; Ward, S.R. Skeletal muscle design to meet functional demands. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1466–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieber, R.L.; Brown, C.G. Sarcomere length-joint angle relationships of seven frog hindlimb muscles. Cells Tissues Organs 1992, 145, 289–295. [Google Scholar] [CrossRef]
- Latash, M. There is no motor redundancy in human movements. There is motor abundance. Motor Control 2000, 4, 259–260. [Google Scholar] [CrossRef] [PubMed]
- Latash, M.L.; Zatsiorsky, V. Biomechanics and Motor Control: Defining Central Concepts; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- MacNaughton, M.B.; MacIntosh, B.R. Reports of the length dependence of fatigue are greatly exaggerated. J. Appl. Physiol. (1985) 2006, 101, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Trezise, J.; Collier, N.; Blazevich, A.J. Anatomical and neuromuscular variables strongly predict maximum knee extension torque in healthy men. Eur. J. Appl. Physiol. 2016, 116, 1159–1177. [Google Scholar] [CrossRef] [PubMed]
- Wackerhage, H.; Schoenfeld, B.J.; Hamilton, D.L.; Lehti, M.; Hulmi, J.J. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J. Appl. Physiol. (1985) 2019, 126, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Franchi, M.V.; Reeves, N.D.; Narici, M.V. Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations. Front. Physiol. 2017, 8, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, A.K.; Cheng, H.; Ross, R.S.; Knowlton, K.U.; Chen, J. The costamere bridges sarcomeres to the sarcolemma in striated muscle. Prog. Pediatr. Cardiol. 2011, 31, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Antonio, J.; Gonyea, W.J. Progressive stretch overload of skeletal muscle results in hypertrophy before hyperplasia. J. Appl. Physiol. (1985) 1993, 75, 1263–1271. [Google Scholar] [CrossRef]
- Assis-Pereira, P.E.; Motoyama, Y.L.; Esteves, G.J.; Quinelato, W.C.; Botter, L.; Tanaka, K.H.; Azevedo, P. Resistance training with slow speed of movement is better for hypertrophy and muscle strength gains than fast speed of movement. Int. J. Appl. Exerc. Physiol. 2016, 5, 37–43. [Google Scholar]
- Vigotsky, A.D.; Halperin, I.; Lehman, G.J.; Trajano, G.S.; Vieira, T.M. Interpreting Signal Amplitudes in Surface Electromyography Studies in Sport and Rehabilitation Sciences. Front. Physiol. 2018, 8, 985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escamilla, R.F.; Fleisig, G.S.; Zheng, N.; Barrentine, S.W.; Wilk, K.E.; Andrews, J.R. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med. Sci. Sports Exerc. 1998, 30, 556–569. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Feldmann, C.R.; Dayne, A.; Mitsche, D.; Alexander, P.; Knetzger, K.J. Muscle activation during lower body resistance training. Int. J. Sports. Med. 2009, 30, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wilk, K.E.; Escamilla, R.F.; Fleisig, G.S.; Barrentine, S.W.; Andrews, J.R.; Boyd, M.L. A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises. Am. J. Sports Med. 1996, 24, 518–527. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Contreras, B.; Willardson, J.M.; Fontana, F.; Tiryaki-Sonmez, G. Muscle activation during low- versus high-load resistance training in well-trained men. Eur. J. Appl. Physiol. 2014, 114, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.A.; Delong, T.; Gehlsen, G. Electromyographic activity of the hamstrings during performance of the leg curl, stiff-leg deadlift and back squat movements. J. Strength Cond. Res. 1999, 13, 168–174. [Google Scholar]
- Andersen, L.L.; Magnusson, S.P.; Nielsen, M.; Haleem, J.; Poulsen, K.; Aagaard, P. Neuromuscular activation in conventional therapeutic exercises and heavy resistance exercises: Implications for rehabilitation. Phys. Ther. 2006, 86, 683–697. [Google Scholar] [PubMed]
- Schoenfeld, B.J. Squatting kinematics and kinetics and their application to exercise performance. J. Strength Cond. Res. 2010, 24, 3497–3506. [Google Scholar] [CrossRef]
- Mendiguchia, J.; Garrues, M.A.; Cronin, J.B.; Contreras, B.; Los Arcos, A.; Malliaropoulos, N.; Nicola, M.; Fernando, I. Nonuniform changes in MRI measurements of the thigh muscles after two hamstring strengthening exercises. J. Strength Cond. Res. 2013, 27, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Ema, R.; Sakaguchi, M.; Akagi, R.; Kawakami, Y. Unique activation of the quadriceps femoris during single- and multi-joint exercises. Eur. J. Appl. Physiol. 2016, 116, 1031–1041. [Google Scholar] [CrossRef]
- Enocson, A.G.; Berg, H.E.; Vargas, R.; Jenner, G.; Tesch, P.A. Signal intensity of MR-images of thigh muscles following acute open- and closed chain kinetic knee extensor exercise—Index of muscle use. Eur. J. Appl. Physiol. 2005, 94, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Maeo, S.; Saito, A.; Otsuka, S.; Shan, X.; Kanehisa, H.; Kawakami, Y. Localization of muscle damage within the quadriceps femoris induced by different types of eccentric exercises. Scand. J. Med. Sci. Sports. 2018, 28, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, N. EMG activities in mono- and bi-articular thigh muscles in combined hip and knee extension. Eur. J. Appl. Physiol. Occup. Physiol. 1988, 58, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Alkner, B.A.; Tesch, P.A.; Berg, H.E. Quadriceps EMG/force relationship in knee extension and leg press. Med. Sci. Sports Exerc. 2000, 32, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Signorile, J.F.; Weber, B.; Roll, B.; Caruso, J.F.; Lowensteyn, I. An Electromyographical Comparison of the Squat. J. Strength Cond. Res. 1994, 8, 178–183. [Google Scholar]
- Rocha Júnior, V.A.; Gentil, P.; Oliveira, E.; Carmo, J.D. Comparison among the EMG activity of the pectoralis major, anterior deltoidis and triceps brachii during the bench press and peck deck exercises. Rev. Bras. Med. Esporte 2007, 13, 51–54. [Google Scholar] [CrossRef]
- Campos, Y.D.; Silva, S.F. Comparison of electromyographic activity during the bench press and barbell pullover exercises. Motriz Revista Educação Física 2014, 20, 200–205. [Google Scholar] [CrossRef]
- Lehman, G.J.; Buchan, D.D.; Lundy, A.; Myers, N.; Nalborczyk, A. Variations in muscle activation levels during traditional latissimus dorsi weight training exercises: An experimental study. Dyn. Med. 2004, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Lusk, S.J.; Hale, B.D.; Russell, D.M. Grip width and forearm orientation effects on muscle activity during the lat pull-down. J. Strength Cond. Res. 2010, 24, 1895–1900. [Google Scholar] [CrossRef]
- Snyder, B.J.; Fry, W.R. Effect of verbal instruction on muscle activity during the bench press exercise. J. Strength Cond. Res. 2012, 26, 2394–2400. [Google Scholar] [CrossRef]
- Calatayud, J.; Vinstrup, J.; Jakobsen, M.D.; Sundstrup, E.; Brandt, M.; Jay, K.; Colado, J.C.; Andersen, L.L. Importance of mind-muscle connection during progressive resistance training. Eur. J. Appl. Physiol. 2016, 116, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Vigotsky, A.; Contreras, B.; Golden, S.; Alto, A.; Larson, R.; Winkelman, N.; Paoli, A. Differential effects of attentional focus strategies during long-term resistance training. Eur. J. Sport Sci. 2018, 18, 705–712. [Google Scholar] [CrossRef]
- Wakahara, T.; Fukutani, A.; Kawakami, Y.; Yanai, T. Nonuniform muscle hypertrophy: Its relation to muscle activation in training session. Med. Sci. Sports Exerc. 2013, 45, 2158–2165. [Google Scholar] [CrossRef] [PubMed]
- Wakahara, T.; Miyamoto, N.; Sugisaki, N.; Murata, K.; Kanehisa, H.; Kawakami, Y.; Fukunaga, T.; Yanai, T. Association between regional differences in muscle activation in one session of resistance exercise and in muscle hypertrophy after resistance training. Eur. J. Appl. Physiol. 2012, 112, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Wakahara, T.; Ema, R.; Miyamoto, N.; Kawakami, Y. Inter- and intramuscular differences in training-induced hypertrophy of the quadriceps femoris: Association with muscle activation during the first training session. Clin. Physiol. Funct. Imaging 2017, 37, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Kinugasa, R.; Akima, H. Neuromuscular activation of triceps surae using muscle functional MRI and EMG. Med. Sci. Sports Exerc. 2005, 37, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Illera-Dominguez, V.; Nuell, S.; Carmona, G.; Padulles, J.M.; Padulles, X.; Lloret, M.; Cussó, R.; Alomar, X.; Cadefau, J.A. Early Functional and Morphological Muscle Adaptations During Short-Term Inertial-Squat Training. Front. Physiol. 2018, 9, 1265. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, N.D.; Housh, T.J.; Bergstrom, H.C.; Cochrane, K.C.; Hill, E.C.; Smith, C.M.; Alomar, X.; Cadefau, J.A. Muscle activation during three sets to failure at 80 vs. 30% 1RM resistance exercise. Eur. J. Appl. Physiol. 2015, 115, 2335–2347. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. J. Strength Cond. Res. 2017, 31, 3508–3523. [Google Scholar] [CrossRef]
- Barbalho, M.; Coswig, V.S.; Raiol, R.; Steele, J.; Fisher, J.P.; Paoli, A.; Bianco, A.; Gentil, P. Does the addition of single joint exercises to a resistance training program improve changes in performance and anthropometric measures in untrained men? Eur. J. Transl. Myol. 2018, 28, 7827. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, M.; Gentil, P.; Raiol, R.; Fisher, J.; Steele, J.; Coswig, V. Influence of Adding Single-Joint Exercise to a Multijoint Resistance Training Program in Untrained Young Women. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, M.; Coswig, V.S.; Raiol, R.; Steele, J.; Fisher, J.; Paoli, A.; Gentil, P. Effects of Adding Single Joint Exercises to a Resistance Training Programme in Trained Women. Sports (Basel) 2018, 6, 160. [Google Scholar] [CrossRef]
- Barbalho, M.; Coswig, V.; Raiol, R.; Fisher, J.; Steele, J.; Bianco, A.; Gentil, P. Single joint exercises do not provide benefits in performance and anthropometric changes in recreational bodybuilders. Eur. J. Sport Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- de Franca, H.S.; Branco, P.A.; Guedes Junior, D.P.; Gentil, P.; Steele, J.; Teixeira, C.V. The effects of adding single-joint exercises to a multi-joint exercise resistance training program on upper body muscle strength and size in trained men. Appl. Physiol. Nutr. Metab. 2015, 40, 822–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezerra, E.S.; Moro, A.R.P.; Orssatto, L.B.D.R.; da Silva, M.E.; Willardson, J.M.; Simao, R. Muscular performance and body composition changes following multi-joint versus combined multi- and single-joint exercises in aging adults. Appl. Physiol. Nutr. Metab. 2018, 43, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.A.; Abboud, L.; Barry, M.; Reed, J.E.; Sheedy, P.F.; Jensen, M.D. Measuring leg muscle and fat mass in humans: Comparison of CT and dual-energy X-ray absorptiometry. J. Appl. Physiol. 2000, 88, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Snijders, T.; Res, P.T.; Smeets, J.S.; van Vliet, S.; van Kranenburg, J.; Maase, K.; Kies, A.K.; Verdijk, L.B.; van Loon, L.J. Protein Ingestion before Sleep Increases Muscle Mass and Strength Gains during Prolonged Resistance-Type Exercise Training in Healthy Young Men. J. Nutr. 2015, 145, 1178–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentil, P.; Soares, S.R.; Pereira, M.C.; Cunha, R.R.; Martorelli, S.S.; Martorelli, A.S.; Bottaro, M. Effect of adding single-joint exercises to a multi-joint exercise resistance-training program on strength and hypertrophy in untrained subjects. Appl. Physiol. Nutr. Metab. 2013, 38, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Gentil, P.; Soares, S.; Bottaro, M.; Single, V.S. Multi-Joint Resistance Exercises: Effects on Muscle Strength and Hypertrophy. Asian J. Sports Med. 2015, 6, e24057. [Google Scholar] [CrossRef] [PubMed]
- Mannarino, P.; Matta, T.; Lima, J.; Simao, R.; Freitas de Salles, B. Single-Joint Exercise Results in Higher Hypertrophy of Elbow Flexors Than Multijoint Exercise. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Weiss, L.W.; Coney, H.D.; Clark, F.C. Gross measures of exercise-induced muscular hypertrophy. J. Orthop. Sports Phys. Ther. 2000, 30, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Bloomquist, K.; Langberg, H.; Karlsen, S.; Madsgaard, S.; Boesen, M.; Raastad, T. Effect of range of motion in heavy load squatting on muscle and tendon adaptations. Eur. J. Appl. Physiol. 2013, 113, 2133–2142. [Google Scholar] [CrossRef] [PubMed]
- Chilibeck, P.D.; Calder, A.W.; Sale, D.G.; Webber, C.E. A comparison of strength and muscle mass increases during resistance training in young women. Eur. J. Appl. Physiol. Occup. Physiol. 1988, 77, 170–175. [Google Scholar] [CrossRef]
- Hackett, D.A.; Johnson, N.A.; Chow, C.M. Training practices and ergogenic aids used by male bodybuilders. J. Strength Cond. Res. 2013, 27, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Grgic, J.; Krieger, J. How many times per week should a muscle be trained to maximize muscle hypertrophy? A systematic review and meta-analysis of studies examining the effects of resistance training frequency. J. Sports Sci. 2019, 37, 1286–1295. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.S.; Gomes, N.; Radaelli, R.; Botton, C.E.; Brown, L.E.; Bottaro, M. Effect of range of motion on muscle strength and thickness. J. Strength Cond. Res. 2012, 26, 2140–2145. [Google Scholar] [CrossRef]
- McMahon, G.E.; Morse, C.I.; Burden, A.; Winwood, K.; Onambele, G.L. Impact of range of motion during ecologically valid resistance training protocols on muscle size, subcutaneous fat, and strength. J. Strength Cond. Res. 2014, 28, 245–255. [Google Scholar] [CrossRef]
- Goto, M.; Maeda, C.; Hirayama, T.; Terada, S.; Nirengi, S.; Kurosawa, Y.; Nagano, A.; Hamaoka, T. Partial Range of Motion Exercise Is Effective for Facilitating Muscle Hypertrophy and Function Through Sustained Intramuscular Hypoxia in Young Trained Men. J. Strength Cond. Res. 2019, 33, 1286–1294. [Google Scholar] [CrossRef]
Unique Exercise Name | Primay Joint Action | Majority of Rom Covered? | Primary Muscle | Other Joint Action | Majority of Rom Covered? | Primary Muscle |
---|---|---|---|---|---|---|
BACK SQUAT | KNEE EXTENSION | YES | QUADRICEPS | HIP EXTENSION | YES | GLUTEALS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoenfeld, B.J.; Grgic, J.; Haun, C.; Itagaki, T.; Helms, E.R. Calculating Set-Volume for the Limb Muscles with the Performance of Multi-Joint Exercises: Implications for Resistance Training Prescription. Sports 2019, 7, 177. https://doi.org/10.3390/sports7070177
Schoenfeld BJ, Grgic J, Haun C, Itagaki T, Helms ER. Calculating Set-Volume for the Limb Muscles with the Performance of Multi-Joint Exercises: Implications for Resistance Training Prescription. Sports. 2019; 7(7):177. https://doi.org/10.3390/sports7070177
Chicago/Turabian StyleSchoenfeld, Brad J., Jozo Grgic, Cody Haun, Takahiro Itagaki, and Eric R. Helms. 2019. "Calculating Set-Volume for the Limb Muscles with the Performance of Multi-Joint Exercises: Implications for Resistance Training Prescription" Sports 7, no. 7: 177. https://doi.org/10.3390/sports7070177