Effects of 3-Week Work-Matched High-Intensity Intermittent Cycling Training with Different Cadences on VO2max in University Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. VO2max
2.4. High-Intensity Intermittent Cycling Training
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Milanović, Z.; Sporiš, G.; Weston, M. Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials. Sports Med. 2015, 45, 1469–1481. [Google Scholar] [CrossRef] [PubMed]
- Gillen, J.B.; Gibala, M.J. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl. Physiol. Nutr. Metab. 2014, 39, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Tabata, I.; Nishimura, K.; Kouzaki, M.; Hirai, Y.; Ogita, F.; Miyachi, M.; Yamamoto, K. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med. Sci. Sports Exerc. 1996, 28, 1327–1330. [Google Scholar] [CrossRef] [PubMed]
- Talanian, J.L.; Galloway, S.D.; Heigenhauser, G.J.; Bonen, A.; Spriet, L.L. Two weeks of high intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J. Appl. Physiol. 2007, 102, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Rodas, G.; Ventura, J.; Cadefau, J.; Cussó, R.; Parra, J. A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur. J. Appl. Physiol. 2000, 82, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Whyte, L.J.; Gill, J.M.; Cathcart, A.J. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism 2010, 59, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Hazell, T.J.; MacPherson, R.E.; Gravelle, B.M.; Lemon, P.W. 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur. J. Appl. Physiol. 2010, 110, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Bayati, M.; Farzad, B.; Gharakhanlou, R.; Agha-Alinejad, H. A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble ‘all-out’ sprint interval training. J. Sports Sci. Med. 2011, 10, 571–576. [Google Scholar] [PubMed]
- Astorino, T.A.; Allen, R.P.; Roberson, D.W.; Jurancich, M. Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. J. Strength Cond. Res. 2012, 26, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Viana, R.B.; de Lira, C.A.B.; Naves, J.P.A.; Coswig, V.S.; Del Vecchio, F.B.; Gentil, P. Tabata protocol: A review of its application, variations and outcomes. Clin. Physiol. Funct. Imaging 2018. [Google Scholar] [CrossRef] [PubMed]
- Ericson, M.O.; Nisell, R. Tibiofemoral joint forces during ergometer cycling. Am. J. Sports Med. 1986, 14, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Fleming, B.C.; Beynnon, B.D.; Renstrom, P.A.; Peura, G.D.; Nichols, C.E.; Johnson, R.J. The strain behavior of the anterior cruciate ligament during bicycling. An in vivo study. Am. J. Sports Med. 1998, 26, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Bijker, K.; de Groot, G.; Hollander, A. Differences in leg muscle activity during running and cycling in humans. Eur. J. Appl. Physiol. 2002, 87, 556–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, E.A.; Rønnestad, B.R. Effects of Cycling Training at Imposed Low Cadences: A Systematic Review. Int. J. Sports Physiol. Perform. 2017, 12, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Hoffman, J.R.; Wendell, M.; Walker, H.; Hebert, M. Effect of contraction frequency on energy expenditure and substrate utilisation during upper and lower body exercise. Br. J. Sports Med. 2004, 38, 31–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skovereng, K.; Ettema, G.; van Beekvelt, M.C.P. Oxygenation, local muscle oxygen consumption and joint specific power in cycling: The effect of cadence at a constant external work rate. Eur. J. Appl. Physiol. 2016, 116, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Skovereng, K.; Ettema, G.; Van Beekvelt, M. The Effect of Cadence on Shank Muscle Oxygen Consumption and Deoxygenation in Relation to Joint Specific Power and Cycling Kinematics. PLoS ONE 2017, 12, e0169573. [Google Scholar] [CrossRef] [PubMed]
- Kounalakis, S.N.; Geladas, N.D. Cardiovascular drift and cerebral and muscle tissue oxygenation during prolonged cycling at different pedalling cadences. Appl. Physiol. Nutr. Metab. 2012, 37, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Shindo, M.; Mishima, S.; Morimura, K.; Higuchi, Y.; Yamada, Y.; Higaki, Y.; Kiyonaga, A. Effects of 2 weeks of low-intensity cycle training with different pedaling rates on the work rate at lactate threshold. Eur. J. Appl. Physiol. 2015, 115, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Francescato, M.P.; Girardis, M.; Di Prampero, P.E. Oxygen cost of internal work during cycling. Eur. J. Appl. Physiol. 1995, 72, 51–57. [Google Scholar] [CrossRef]
- Matsuo, T.; Saotome, K.; Seino, S.; Shimojo, N.; Matsushita, A.; Iemitsu, M.; Ohshima, H.; Tanaka, K.; Mukai, C. Effects of a low-volume aerobic-type interval exercise on VO2max and cardiac mass. Med. Sci. Sports Exerc. 2014, 46, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Paton, C.D.; Hopkins, W.G.; Cook, C. Effects of low- vs. high-cadence interval training on cycling performance. J. Strength Cond. Res. 2009, 23, 1758–1763. [Google Scholar] [CrossRef] [PubMed]
- Granata, C.; Oliveira, R.S.; Little, J.P.; Renner, K.; Bishop, D.J. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. FASEB J. 2016, 30, 3413–3423. [Google Scholar] [CrossRef] [PubMed]
- Takizawa, K.; Yamaguchi, T.; Shibata, K. Warm-up exercises may not be so important for enhancing submaximal running performance. J. Strength Cond. Res. 2018, 32, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Takizawa, K.; Yamaguchi, T.; Shibata, K. The effects of short-duration static stretching of the lower extremities after warm-up exercise on endurance running performance. Mov. Health Exerc. 2015, 4, 37–49. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Takizawa, K.; Shibata, K. Acute effect of dynamic stretching on endurance running performance in well-trained male runners. J. Strength Cond. Res. 2015, 29, 3045–3052. [Google Scholar] [CrossRef] [PubMed]
- Tabata, I.; Irisawa, K.; Kouzaki, M.; Nishimura, K.; Ogita, F.; Miyachi, M. Metabolic profile of high intensity intermittent exercises. Med. Sci. Sports Exerc. 1997, 29, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.F.M.D.; Caputo, F.; Corvino, R.B.; Denadai, B.S. Short-term low-intensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scand. J. Med. Sci. Sports 2016, 26, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Ahlquist, L.E.; Bassett, D.R.; Sufit, R.; Nagle, F.J.; Thomas, D.P. The effect of pedaling frequency on glycogen depletion rates in type I and type II quadriceps muscle fibers during submaximal cycling exercise. Eur. J. Appl. Physiol. 1992, 65, 360–364. [Google Scholar] [CrossRef]
- Deschenes, M.R.; Kraemer, W.J.; McCoy, R.W.; Volek, J.S.; Turner, B.M.; Weinlein, J.C. Muscle recruitment patterns regulate physiological responses during exercise of the same intensity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R2229–R2236. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.S.; Proctor, D.N.; Geiger, P.C.; Sieck, G.C. Reserve capacity for ATP consumption during isometric contraction in human skeletal muscle fibers. J. Appl. Physiol. 2001, 90, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Scribbans, T.D.; Vecsey, S.; Hankinson, P.B.; Foster, W.S.; Gurd, B.J. The Effect of Training Intensity on VO2max in Young Healthy Adults: A Meta-Regression and Meta-Analysis. Int. J. Exerc. Sci. 2016, 9, 230–247. [Google Scholar] [PubMed]
Group | Session | 1–2 set (kp) | 3–4 set (kp) | 5–6 set (kp) | 7–8 set (kp) |
---|---|---|---|---|---|
60 rpm | 1–3 session | 6.2 ± 0.4 | 5.9 ± 0.4 | 5.7 ± 0.4 | 5.4 ± 0.4 |
4–6 session | 6.3 ± 0.4 | 6.1 ± 0.4 | 5.8 ± 0.4 | 5.5 ± 0.4 | |
7–9 session | 6.5 ± 0.4 | 6.2 ± 0.4 | 6.0 ± 0.4 | 5.7 ± 0.4 | |
120 rpm | 1–3 session | 3.1 ± 0.2 | 2.9 ± 0.2 | 2.8 ± 0.2 | 2.7 ± 0.2 |
4–6 session | 3.1 ± 0.2 | 3.0 ± 0.2 | 2.9 ± 0.2 | 2.8 ± 0.2 | |
7–9 session | 3.2 ± 0.2 | 3.1 ± 0.2 | 3.0 ± 0.2 | 2.8 ± 0.2 |
60 rpm | 120 rpm | p Value | Cohen’s d | |
---|---|---|---|---|
Total workload (W) | 25,234.7 ± 1572.8 | 24,897.1 ± 1757.5 | 0.673 | 0.202 |
Achievement rate (%) | 98.3 ± 1.0 | 97.9 ± 1.4 | 0.522 | 0.309 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomabechi, N.; Takizawa, K.; Shibata, K.; Mizuno, M. Effects of 3-Week Work-Matched High-Intensity Intermittent Cycling Training with Different Cadences on VO2max in University Athletes. Sports 2018, 6, 107. https://doi.org/10.3390/sports6040107
Tomabechi N, Takizawa K, Shibata K, Mizuno M. Effects of 3-Week Work-Matched High-Intensity Intermittent Cycling Training with Different Cadences on VO2max in University Athletes. Sports. 2018; 6(4):107. https://doi.org/10.3390/sports6040107
Chicago/Turabian StyleTomabechi, Nobuyasu, Kazuki Takizawa, Keisuke Shibata, and Masao Mizuno. 2018. "Effects of 3-Week Work-Matched High-Intensity Intermittent Cycling Training with Different Cadences on VO2max in University Athletes" Sports 6, no. 4: 107. https://doi.org/10.3390/sports6040107
APA StyleTomabechi, N., Takizawa, K., Shibata, K., & Mizuno, M. (2018). Effects of 3-Week Work-Matched High-Intensity Intermittent Cycling Training with Different Cadences on VO2max in University Athletes. Sports, 6(4), 107. https://doi.org/10.3390/sports6040107