The Potential Role of Genetic Markers in Talent Identification and Athlete Assessment in Elite Sport
Abstract
:1. Introduction
2. Talent Detection and Identification
3. Measurements of Sporting Performance
3.1. Measurements of Athletic Performance
3.1.1. Aerobic Assessment
3.1.2. Strength and Power Assessments
3.1.3. Acceleration and Maximal Linear Sprinting Speed
3.1.4. Muscle Fibre Composition
3.2. Measurements of Skill Performance
3.3. Measurements of Match Performance
4. Contribution of Genetic Variation to Athlete Strength, Power, and Endurance
4.1. The Role of ACE
4.2. The Role of ACTN3
4.3. Additional Candidate Genes Implicated in Strength and Power
4.4. Additional Candidate Genes Implicated in Endurance and Aerobic Capacity
5. Genetic Links to Ability and Skill in Sport
5.1. BDNF Polymorphism and Motor Skill Acquisition
5.2. Dopamine Receptors and Procedural Learning of Complex Skills
6. Ethical Considerations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Drozdovska, S.B.; Dosenko, V.E.; Ahmetov, I.I.; Ilyin, V.N. The association of gene polymorphisms with athlete status in ukrainians. Biol. Sport 2013, 30, 163–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, D.B.; Cavalleri, G.L. Genomics: Understanding human diversity. Nature 2005, 437, 1241–1242. [Google Scholar] [CrossRef] [PubMed]
- Castellano, J.; Casamichana, D.; Lago, C. The use of match statistics that discriminate between successful and unsuccessful soccer teams. J. Hum. Kinet. 2012, 31, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.; Ibanez, S.J.; De Santos, R.M.; Leite, N.; Sampaio, J. Identifying basketball performance indicators in regular season and playoff games. J. Hum. Kinet. 2013, 36, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Jacob, Y.; Cripps, A.; Evans, T.; Chivers, P.T.; Joyce, C.; Anderton, R.S. Identification of genetic markers for skill and athleticism in sub-elite australian football players: A pilot study. J. Sports Med. Phys. Fit. 2016. [Google Scholar] [CrossRef]
- Lorenzo, A.; Gomez, M.A.; Ortega, E.; Ibanez, S.J.; Sampaio, J. Game related statistics which discriminate between winning and losing under-16 male basketball games. J. Sports Sci. Med. 2010, 9, 664–668. [Google Scholar] [PubMed]
- Mikolajec, K.; Maszczyk, A.; Zajac, T. Game indicators determining sports performance in the nba. J. Hum. Kinet. 2013, 37, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Mooney, M.; O’Brien, B.; Cormack, S.; Coutts, A.; Berry, J.; Young, W. The relationship between physical capacity and match performance in elite australian football: A mediation approach. J. Sci. Med. Sport Sports Med. Aust. 2011, 14, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Ortega, E.; Villarejo, D.; Palao, J.M. Differences in game statistics between winning and losing rugby teams in the six nations tournament. J. Sports Sci. Med. 2009, 8, 523–527. [Google Scholar] [PubMed]
- Vaz, L.; Rooyen, M.V.; Sampaio, J. Rugby game-related statistics that discriminate between winning and losing teams in irb and super twelve close games. J. Sports Sci. Med. 2010, 9, 51–55. [Google Scholar] [PubMed]
- Burgess, D.; Naughton, G.; Hopkins, W. Draft-camp predictors of subsequent career success in the australian football league. J. Sci. Med. Sport 2012, 15, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Piggott, B.G.; McGuigan, M.R.; Newton, M.J. Relationship between physical capacity and match performance in semiprofessional australian rules football. J. Strength Cond. Res. 2015, 29, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Vaeyens, R.; Lenoir, M.; Williams, A.M.; Philippaerts, R.M. Talent identification and development programmes in sport: Current models and future directions. Sports Med. 2008, 38, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Coelho E Silva, M.J.; Figueiredo, A.J.; Moreira Carvalho, H.; Malina, R.M. Functional capacities and sport-specific skills of 14- to 15-year-old male basketball players: Size and maturity effects. Eur. J. Sport Sci. 2008, 8, 277–285. [Google Scholar] [CrossRef]
- Greenwood, P.M.; Parasuraman, R. Normal genetic variation, cognition, and aging. Behav. Cognit. Neurosci. Rev. 2003, 2, 278–306. [Google Scholar] [CrossRef] [PubMed]
- Cieszczyk, P.; Eider, J.; Ostanek, M.; Arczewska, A.; Leonska-Duniec, A.; Sawczyn, S.; Ficek, K.; Krupecki, K. Association of the actn3 r577x polymorphism in polish power-orientated athletes. J. Hum. Kinet. 2011, 28, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Eynon, N.; Ruiz, J.R.; Femia, P.; Pushkarev, V.P.; Cieszczyk, P.; Maciejewska-Karlowska, A.; Sawczuk, M.; Dyatlov, D.A.; Lekontsev, E.V.; Kulikov, L.M.; et al. The actn3 r577x polymorphism across three groups of elite male european athletes. PLoS ONE 2012, 7, e43132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myerson, S.; Hemingway, H.; Budget, R.; Martin, J.; Humphries, S.; Montgomery, H. Human angiotensin i-converting enzyme gene and endurance performance. J. Appl. Physiol. 1999, 87, 1313–1316. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, I.D.; Papadopoulos, C.; Kouvatsi, A.; Triantaphyllidis, C. The ace i/d polymorphism in elite greek track and field athletes. J. Sports Med. Phys. Fit. 2009, 49, 459–463. [Google Scholar]
- Ribas, M.R.; Oliveira Netto, Z.C.; Salgueirosa, F.; Fernandes, P.; Matos, O.D.; Bassan, J.C. Association of actn3 r577x and ace i/d polymorphisms in brazilians wrestlers. Rev. Bras. Med. Esporte 2017, 23, 469–472. [Google Scholar] [CrossRef]
- Eynon, N.; Meckel, Y.; Sagiv, M.; Yamin, C.; Amir, R.; Sagiv, M.; Goldhammer, E.; Duarte, J.A.; Oliveira, J. Do ppargc1a and pparalpha polymorphisms influence sprint or endurance phenotypes? Scand. J. Med. Sci. Sports 2009, 20, e145–e150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciejewska, A.; Sawczuk, M.; Cieszczyk, P.; Mozhayskaya, I.A.; Ahmetov, I.I. The ppargc1a gene gly482ser in polish and russian athletes. J. Sports Sci. 2012, 30, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Santiago, C.; Ruiz, J.R.; Buxens, A.; Artieda, M.; Arteta, D.; Gonzalez-Freire, M.; Rodriguez-Romo, G.; Altmae, S.; Lao, J.I.; Gomez-Gallego, F.; et al. Trp64arg polymorphism in adrb3 gene is associated with elite endurance performance. Br. J. Sports Med. 2011, 45, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, B.; Reis, J.; Martinowich, K.; Schambra, H.M.; Ji, Y.; Cohen, L.G.; Lu, B. Direct current stimulation promotes bdnf-dependent synaptic plasticity: Potential implications for motor learning. Neuron 2010, 66, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Huertas, E.; Buhler, K.M.; Echeverry-Alzate, V.; Gimenez, T.; Lopez-Moreno, J.A. C957t polymorphism of the dopamine d2 receptor gene is associated with motor learning and heart rate. Genes Brain Behav. 2012, 11, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.M.; Reilly, T. Talent identification and development in soccer. J. Sports Sci. 2000, 18, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.; Woods, C.; Gastin, P. Predicting higher selection in elite junior australian rules football: The influence of physical performance and anthropometric attributes. J. Sci. Med. Sport. 2015, 18, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Sierer, S.P.; Battaglini, C.L.; Mihalik, J.P.; Shields, E.W.; Tomasini, N.T. The national football league combine: Performance differences between drafted and nondrafted players entering the 2004 and 2005 drafts. J. Strength Cond. Res. 2008, 22, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Till, K.; Cobley, S.; O’Hara, J.; Morley, D.; Chapman, C.; Cooke, C. Retrospective analysis of anthropometric and fitness characteristics associated with long-term career progression in rugby league. J. Sci. Med. Sport 2015, 18, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Glaister, M. Multiple sprint work: Physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med. 2005, 35, 757–777. [Google Scholar] [CrossRef] [PubMed]
- Stanula, A.; Roczniok, R.; Maszczyk, A.; Pietraszewski, P.; Zajac, A. The role of aerobic capacity in high-intensity intermittent efforts in ice-hockey. Biol. Sport 2014, 31, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; White, A.C. Assessment of anaerobic power to verify vo2max attainment. Clin. Physiol. Funct. Imaging 2010, 30, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Magnan, R.E.; Kwan, B.M.; Ciccolo, J.T.; Gurney, B.; Mermier, C.M.; Bryan, A.D. Aerobic capacity testing with inactive individuals: The role of subjective experience. J. Phys. Act. Health 2013, 10, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. The yo-yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008, 38, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M. The 30–15 intermittent fitness test: Accuracy for individualizing interval training of young intermittent sport players. J. Strength Cond. Res. 2008, 22, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.A.; Joseph, A.N.; Campagna, P.D. The prediction of vo2max: A comparison of 7 indirect tests of aerobic power. J. Strength Cond. Res. 1999, 13, 346–352. [Google Scholar] [CrossRef]
- Leger, L.A.; Lambert, J. A maximal multistage 20-m shuttle run test to predict vo2 max. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 49, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Manske, R.; Reiman, M. Functional performance testing for power and return to sports. Sports Health 2013, 5, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Matthys, S.P.; Vaeyens, R.; Fransen, J.; Deprez, D.; Pion, J.; Vandendriessche, J.; Vandorpe, B.; Lenoir, M.; Philippaerts, R. A longitudinal study of multidimensional performance characteristics related to physical capacities in youth handball. J. Sports Sci. 2013, 31, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.T.; Raynor, A.J.; Bruce, L.; McDonald, Z.; Collier, N. Predicting playing status in junior australian football using physical and anthropometric parameters. J. Sci. Med. Sport 2015, 18, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Secomb, J.L.; Nimphius, S.; Farley, O.R.; Lundgren, L.E.; Tran, T.T.; Sheppard, J.M. Relationships between lower-body muscle structure and, lower-body strength, explosiveness and eccentric leg stiffness in adolescent athletes. J. Sports Sci. Med. 2015, 14, 691–697. [Google Scholar] [PubMed]
- McGuigan, M.R.; Winchester, J.B. The relationship between isometric and dynamic strength in college football players. J. Sports Sci. Med. 2008, 7, 101–105. [Google Scholar] [PubMed]
- McGuigan, M.R.; Winchester, J.B.; Erickson, T. The importance of isometric maximum strength in college wrestlers. J. Sports Sci. Med. 2006, 5, 108–113. [Google Scholar] [PubMed]
- Haff, G.G.; Carlock, J.M.; Hartman, M.J.; Kilgore, J.L.; Kawamori, N.; Jackson, J.R.; Morris, R.T.; Sands, W.A.; Stone, M.H. Force-time curve characteristics of dynamic and isometric muscle actions of elite women olympic weightlifters. J. Strength Cond. Res. 2005, 19, 741–748. [Google Scholar] [PubMed]
- Kawamori, N.; Rossi, S.J.; Justice, B.D.; Haff, E.E.; Pistilli, E.E.; O’Bryant, H.S.; Stone, M.H.; Haff, G.G. Peak force and rate of force development during isometric and dynamic mid-thigh clean pulls performed at various intensities. J. Strength Cond. Res. 2006, 20, 483–491. [Google Scholar] [PubMed]
- Beckham, G.; Mizuguchi, S.; Carter, C.; Sato, K.; Ramsey, M.; Lamont, H.; Hornsby, G.; Haff, G.; Stone, M. Relationships of isometric mid-thigh pull variables to weightlifting performance. J. Sports Med. Phys. Fit. 2013, 53, 573–581. [Google Scholar]
- Little, T.; Williams, A.G. Specificity of acceleration, maximum speed, and agility in professional soccer players. J. Strength Cond. Res. 2005, 19, 76–78. [Google Scholar] [PubMed]
- Pyne, D.B.; Saunders, P.U.; Montgomery, P.G.; Hewitt, A.J.; Sheehan, K. Relationships between repeated sprint testing, speed, and endurance. J. Strength Cond. Res. 2008, 22, 1633–1637. [Google Scholar] [CrossRef] [PubMed]
- Carling, C.; le Gall, F.; Reilly, T.; Williams, A.M. Do anthropometric and fitness characteristics vary according to birth date distribution in elite youth academy soccer players? Scand. J. Med. Sci. Sports 2009, 19, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Young, W.B.; Pryor, L. Relationship between pre-season anthropometric and fitness measures and indicators of playing performance in elite junior australian rules football. J. Sci. Med. Sport Sports Med. Aust. 2007, 10, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Fernandez, J.; Ulbricht, A.; Ferrauti, A. Fitness testing of tennis players: How valuable is it? Br. J. Sports Med. 2014, 48 (Suppl. 1), i22–i31. [Google Scholar] [CrossRef]
- Kanatous, S.B.; Mammen, P.P. Regulation of myoglobin expression. J. Exp. Biol. 2010, 213, 2741–2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canepari, M.; Pellegrino, M.A.; D’Antona, G.; Bottinelli, R. Single muscle fiber properties in aging and disuse. Scand. J. Med. Sci. Sports 2010, 20, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Criswell, D.; Herb, R.A.; Demirel, H.; Dodd, S. Age-related increases in diaphragmatic maximal shortening velocity. J. Appl. Physiol. 1996, 80, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Evertsen, F.; Medbo, J.I.; Jebens, E.; Gjovaag, T.F. Effect of training on the activity of five muscle enzymes studied on elite cross-country skiers. Acta Physiol. Scand. 1999, 167, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Baguet, A.; Everaert, I.; Achten, E.; Thomis, M.; Derave, W. The influence of sex, age and heritability on human skeletal muscle carnosine content. Amino Acids 2012, 43, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Baguet, A.; Everaert, I.; Hespel, P.; Petrovic, M.; Achten, E.; Derave, W. A new method for non-invasive estimation of human muscle fiber type composition. PLoS ONE 2011, 6, e21956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seto, J.T.; Quinlan, K.G.; Lek, M.; Zheng, X.F.; Garton, F.; MacArthur, D.G.; Hogarth, M.W.; Houweling, P.J.; Gregorevic, P.; Turner, N.; et al. Actn3 genotype influences muscle performance through the regulation of calcineurin signaling. J. Clin. Investig. 2013, 123, 4255–4263. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Cumming, S.P.; Kontos, A.P.; Eisenmann, J.C.; Ribeiro, B.; Aroso, J. Maturity-associated variation in sport-specific skills of youth soccer players aged 13-15 years. J. Sports Sci. 2005, 23, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Faber, I.R.; Oosterveld, F.G.; Nijhuis-Van der Sanden, M.W. Does an eye-hand coordination test have added value as part of talent identification in table tennis? A validity and reproducibility study. PLoS ONE 2014, 9, e85657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pion, J.A.; Fransen, J.; Deprez, D.N.; Segers, V.I.; Vaeyens, R.; Philippaerts, R.M.; Lenoir, M. Stature and jumping height are required in female volleyball, but motor coordination is a key factor for future elite success. J. Strength Cond. Res. Natl.Strength Cond. Assoc. 2015, 29, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
- Waldron, M.; Worsfold, P.; Twist, C.; Lamb, K. The reliability of tests for sport-specific skill amongst elite youth rugby league players. Eur. J. Sport Sci. 2014, 14 (Suppl. 1), S471–S477. [Google Scholar] [CrossRef]
- O’Shaughnessy, D.M. Possession versus position: Strategic evaluation in afl. J. Sports Sci. Med. 2006, 5, 533–540. [Google Scholar] [PubMed]
- Johnston, R.J.; Watsford, M.L.; Pine, M.J.; Spurrs, R.W.; Murphy, A.; Pruyn, E.C. Movement demands and match performance in professional australian football. Int. J. Sports Med. 2012, 33, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.; Terrados, N.; Ortolano, R.; Iglesias-Cubero, G.; Reguero, J.R.; Batalla, A.; Cortina, A.; Fernandez-Garcia, B.; Rodriguez, C.; Braga, S.; et al. Genetic variation in the renin-angiotensin system and athletic performance. Eur. J. Appl. Physiol. 2000, 82, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Gayagay, G.; Yu, B.; Hambly, B.; Boston, T.; Hahn, A.; Celermajer, D.S.; Trent, R.J. Elite endurance athletes and the ace i allele—The role of genes in athletic performance. Hum. Genet. 1998, 103, 48–50. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, I.B.; Woods, D.R.; Montgomery, H.E.; Shneider, O.V.; Kazakov, V.I.; Tomilin, N.V.; Rogozkin, V.A. The angiotensin converting enzyme i/d polymorphism in russian athletes. Eur. J. Hum. Genet. 2001, 9, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Tsianos, G.; Sanders, J.; Dhamrait, S.; Humphries, S.; Grant, S.; Montgomery, H. The ace gene insertion/deletion polymorphism and elite endurance swimming. Eur. J. Appl. Physiol. 2004, 92, 360–362. [Google Scholar] [CrossRef] [PubMed]
- Woods, D.; Hickman, M.; Jamshidi, Y.; Brull, D.; Vassiliou, V.; Jones, A.; Humphries, S.; Montgomery, H. Elite swimmers and the d allele of the ace i/d polymorphism. Hum. Genet. 2001, 108, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Charos, A.E.; Reed, B.D.; Raha, D.; Szekely, A.M.; Weissman, S.M.; Snyder, M. A highly integrated and complex ppargc1a transcription factor binding network in hepg2 cells. Genome Res. 2012, 22, 1668–1679. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Wu, H.; Tarr, P.T.; Zhang, C.Y.; Wu, Z.; Boss, O.; Michael, L.F.; Puigserver, P.; Isotani, E.; Olson, E.N.; et al. Transcriptional co-activator pgc-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002, 418, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.E.; Shuldiner, A.R.; Zmuda, J.M.; Ferrell, R.E.; McCole, S.D.; Hagberg, J.M. Obesity gene variant and elite endurance performance. Metabolism 2001, 50, 1391–1392. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.R. Pharmacogenetics of the human beta-adrenergic receptors. Pharmacogenomics J. 2007, 7, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Wagoner, L.E.; Craft, L.L.; Zengel, P.; McGuire, N.; Rathz, D.A.; Dorn, G.W., II; Liggett, S.B. Polymorphisms of the beta1-adrenergic receptor predict exercise capacity in heart failure. Am. Heart J. 2002, 144, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Morin-Moncet, O.; Beaumont, V.; de Beaumont, L.; Lepage, J.F.; Theoret, H. Bdnf val66met polymorphism is associated with abnormal interhemispheric transfer of a newly acquired motor skill. J. Neurophysiol. 2014, 111, 2094–2102. [Google Scholar] [CrossRef] [PubMed]
- Puthucheary, Z.; Skipworth, J.R.; Rawal, J.; Loosemore, M.; Van Someren, K.; Montgomery, H.E. The ace gene and human performance: 12 years on. Sports Med. 2011, 41, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Mustafina, L.J.; Naumov, V.A.; Cieszczyk, P.; Popov, D.V.; Lyubaeva, E.V.; Kostryukova, E.S.; Fedotovskaya, O.N.; Druzhevskaya, A.M.; Astratenkova, I.V.; Glotov, A.S.; et al. Agtr2 gene polymorphism is associated with muscle fibre composition, athletic status and aerobic performance. Exp. Physiol. 2014, 99, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Gineviciene, V.; Jakaitiene, A.; Tubelis, L.; Kucinskas, V. Variation in the ace, ppargc1a and ppara genes in lithuanian football players. Eur. J. Sport Sci. 2014, 14 (Suppl. 1), S289–S295. [Google Scholar] [CrossRef]
- Goh, K.P.; Chew, K.; Koh, A.; Guan, M.; Wong, Y.S.; Sum, C.F. The relationship between ace gene id polymorphism and aerobic capacity in asian rugby players. Singap. Med. J. 2009, 50, 997–1003. [Google Scholar]
- Niu, T.; Chen, X.; Xu, X. Angiotensin converting enzyme gene insertion/deletion polymorphism and cardiovascular disease: Therapeutic implications. Drugs 2002, 62, 977–993. [Google Scholar] [CrossRef] [PubMed]
- Rabensteiner, D.; Abrahamian, H.; Irsigler, K.; Hermann, K.M.; Kiener, H.P.; Mayer, G.; Kaider, A.; Prager, R. Ace gene polymorphism and proliferative retinopathy in type 1 diabetes: Results of a case-control study. Diabetes Care 1999, 22, 1530–1535. [Google Scholar] [CrossRef] [PubMed]
- Miners, S.; Ashby, E.; Baig, S.; Harrison, R.; Tayler, H.; Speedy, E.; Prince, J.A.; Love, S.; Kehoe, P.G. Angiotensin-converting enzyme levels and activity in alzheimer’s disease: Differences in brain and csf ace and association with ace1 genotypes. Am. J. Transl. Res. 2009, 1, 163–177. [Google Scholar] [PubMed]
- Tuo, J.; Bojanowski, C.M.; Chan, C.C. Genetic factors of age-related macular degeneration. Prog. Retin. Eye Res. 2004, 23, 229–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amir, O.; Amir, R.; Yamin, C.; Attias, E.; Eynon, N.; Sagiv, M.; Sagiv, M.; Meckel, Y. The ace deletion allele is associated with israeli elite endurance athletes. Exp. Physiol. 2007, 92, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Cho, J.Y.; Jeon, J.Y.; Koh, Y.G.; Kim, Y.M.; Kim, H.J.; Park, M.; Um, H.S.; Kim, C. Ace dd genotype is unfavorable to korean short-term muscle power athletes. Int. J. Sports Med. 2010, 31, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Micheli, M.L.; Gulisano, M.; Morucci, G.; Punzi, T.; Ruggiero, M.; Ceroti, M.; Marella, M.; Castellini, E.; Pacini, S. Angiotensin-converting enzyme/vitamin d receptor gene polymorphisms and bioelectrical impedance analysis in predicting athletic performances of italian young soccer players. J. Strength Cond. Res. 2011, 25, 2084–2091. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, O.M.; Moustafa, M.; El Masry, T.M. Association of insertion–deletion polymorphism of ace gene and alzheimer’s disease in egyptian patients. Egypt. J. Medical Hum. Genet. 2014, 15, 355–360. [Google Scholar] [CrossRef]
- Orysiak, J.; Zmijewski, P.; Klusiewicz, A.; Kaliszewski, P.; Malczewska-Lenczowska, J.; Gajewski, J.; Pokrywka, A. The association between ace gene variation and aerobic capacity in winter endurance disciplines. Biol. Sport 2013, 30, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.; Xenophontos, S.L.; Cariolou, M.A.; Mokone, G.G.; Hudson, D.E.; Anastasiades, L.; Noakes, T.D. The ace gene and endurance performance during the south african ironman triathlons. Med. Sci. Sports Exerc. 2004, 36, 1314–1320. [Google Scholar] [CrossRef] [PubMed]
- Shahmoradi, S.; Ahmadalipour, A.; Salehi, M. Evaluation of ace gene i/d polymorphism in iranian elite athletes. Adv. Biomed. Res. 2014, 3. [Google Scholar] [CrossRef]
- Rigat, B.; Hubert, C.; Alhenc-Gelas, F.; Cambien, F.; Corvol, P.; Soubrier, F. An insertion/deletion polymorphism in the angiotensin i-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Investig. 1990, 86, 1343–1346. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.K.; Kam, K.K.; Yan, B.P.; Lam, Y.Y. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: Current status. Br. J. Pharmacol. 2010, 160, 1273–1292. [Google Scholar] [CrossRef] [PubMed]
- Vancini, R.L.; Pesquero, J.B.; Fachina, R.J.; Andrade Mdos, S.; Borin, J.P.; Montagner, P.C.; de Lira, C.A. Genetic aspects of athletic performance: The african runners phenomenon. Open Access J. Sports Med. 2014, 5, 123–127. [Google Scholar] [PubMed]
- Scott, R.A.; Irving, R.; Irwin, L.; Morrison, E.; Charlton, V.; Austin, K.; Tladi, D.; Deason, M.; Headley, S.A.; Kolkhorst, F.W.; et al. Actn3 and ace genotypes in elite jamaican and us sprinters. Med. Sci. Sports Exerc. 2010, 42, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Sessa, F.; Chetta, M.; Petito, A.; Franzetti, M.; Bafunno, V.; Pisanelli, D.; Sarno, M.; Iuso, S.; Margaglione, M. Gene polymorphisms and sport attitude in italian athletes. Genet. Test. Mol. Biomark. 2011, 15, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, I.D.; Lockey, S.J.; Voisin, S.; Herbert, A.J.; Garton, F.; Houweling, P.J.; Cieszczyk, P.; Maciejewska-Skrendo, A.; Sawczuk, M.; Massidda, M.; et al. No association between actn3 r577x and ace i/d polymorphisms and endurance running times in 698 caucasian athletes. BMC Genom. 2018, 19, 13. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; MacArthur, D.G.; Gulbin, J.P.; Hahn, A.G.; Beggs, A.H.; Easteal, S.; North, K. Actn3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet. 2003, 73, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Eynon, N.; Hanson, E.D.; Lucia, A.; Houweling, P.J.; Garton, F.; North, K.N.; Bishop, D.J. Genes for elite power and sprint performance: Actn3 leads the way. Sports Med. 2013, 43, 803–817. [Google Scholar] [CrossRef] [PubMed]
- Alfred, T.; Ben-Shlomo, Y.; Cooper, R.; Hardy, R.; Cooper, C.; Deary, I.J.; Gunnell, D.; Harris, S.E.; Kumari, M.; Martin, R.M.; et al. Actn3 genotype, athletic status, and life course physical capability: Meta-analysis of the published literature and findings from nine studies. Hum. Mutat. 2011, 32, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Song, K.H.; Kim, C.H. The actn3 r577x variant in sprint and strength performance. J. Exerc. Nutr. Biochem. 2014, 18, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Puthucheary, Z.; Skipworth, J.R.; Rawal, J.; Loosemore, M.; Van Someren, K.; Montgomery, H.E. Genetic influences in sport and physical performance. Sports Med. 2011, 41, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Druzhevskaya, A.M.; Lyubaeva, E.V.; Popov, D.V.; Vinogradova, O.L.; Williams, A.G. The dependence of preferred competitive racing distance on muscle fibre type composition and actn3 genotype in speed skaters. Exp. Physiol. 2011, 96, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, E.M.; Coelho, D.B.; Cruz, I.R.; Morandi, R.F.; Veneroso, C.E.; de Azambuja Pussieldi, G.; Carvalho, M.R.; Silami-Garcia, E.; De Paz Fernandez, J.A. The actn3 genotype in soccer players in response to acute eccentric training. Eur. J. Appl. Physiol. 2012, 112, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, C.; Rankinen, T.; Timmons, J.A. Genomics and genetics in the biology of adaptation to exercise. Compr. Physiol. 2011, 1, 1603–1648. [Google Scholar] [PubMed]
- Voisin, S.; Cieszczyk, P.; Pushkarev, V.P.; Dyatlov, D.A.; Vashlyayev, B.F.; Shumaylov, V.A.; Maciejewska-Karlowska, A.; Sawczuk, M.; Skuza, L.; Jastrzebski, Z.; et al. Epas1 gene variants are associated with sprint/power athletic performance in two cohorts of european athletes. BMC Genom. 2014, 15, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabbasov, R.T.; Arkhipova, A.A.; Borisova, A.V.; Hakimullina, A.M.; Kuznetsova, A.V.; Williams, A.G.; Day, S.H.; Ahmetov, I.I. The hif1a gene pro582ser polymorphism in russian strength athletes. J. Strength Cond. Res. 2013, 27, 2055–2058. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Gallego, F.; Ruiz, J.R.; Buxens, A.; Artieda, M.; Arteta, D.; Santiago, C.; Rodriguez-Romo, G.; Lao, J.I.; Lucia, A. The -786 t/c polymorphism of the nos3 gene is associated with elite performance in power sports. Eur. J. Appl. Physiol. 2009, 107, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, A.; Sapere, N.; Piazza, M.; Aquino, G.; Iuliano, E.; Intrieri, M.; Calcagno, G. Ace and agtr1 polymorphisms in elite rhythmic gymnastics. Genet. Test. Mol. Biomark. 2013, 17, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Juffer, P.; Furrer, R.; Gonzalez-Freire, M.; Santiago, C.; Verde, Z.; Serratosa, L.; Morate, F.J.; Rubio, J.C.; Martin, M.A.; Ruiz, J.R.; et al. Genotype distributions in top-level soccer players: A role for ace? Int. J. Sports Med. 2009, 30, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.M.; Silva, A.J.; Garrido, N.D.; Louro, H.; de Oliveira, R.J.; Breitenfeld, L. Association between ace d allele and elite short distance swimming. Eur. J. Appl. Physiol. 2009, 106, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; MacArthur, D.G.; Wolde, B.; Onywera, V.O.; Boit, M.K.; Lau, S.Y.; Wilson, R.H.; Scott, R.A.; Pitsiladis, Y.P.; North, K. The actn3 r577x polymorphism in east and west african athletes. Med. Sci. Sports Exerc. 2007, 39, 1985–1988. [Google Scholar] [CrossRef] [PubMed]
- Niemi, A.K.; Majamaa, K. Mitochondrial DNA and actn3 genotypes in finnish elite endurance and sprint athletes. Eur. J. Hum. Genet. 2005, 13, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Druzhevskaya, A.M.; Ahmetov, I.I.; Astratenkova, I.V.; Rogozkin, V.A. Association of the actn3 r577x polymorphism with power athlete status in russians. Eur. J. Appl. Physiol. 2008, 103, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Roth, S.M.; Walsh, S.; Liu, D.; Metter, E.J.; Ferrucci, L.; Hurley, B.F. The actn3 r577x nonsense allele is under-represented in elite-level strength athletes. Eur. J. Hum. Genet. 2008, 16, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Santiago, C.; Gonzalez-Freire, M.; Serratosa, L.; Morate, F.J.; Meyer, T.; Gomez-Gallego, F.; Lucia, A. Actn3 genotype in professional soccer players. Br. J. Sports Med. 2008, 42, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Chiu, L.L.; Wu, Y.F.; Tang, M.T.; Yu, H.C.; Hsieh, L.L.; Hsieh, S.S. Actn3 genotype and swimming performance in taiwan. Int. J. Sports Med. 2011, 32, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Fernandez del Valle, M.; Verde, Z.; Diez-Vega, I.; Santiago, C.; Yvert, T.; Rodriguez-Romo, G.; Gomez-Gallego, F.; Molina, J.J.; Lucia, A. Actn3 r577x polymorphism does not influence explosive leg muscle power in elite volleyball players. Scand. J. Med. Sci. Sports 2011, 21, e34–e41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagberg, J.M.; Moore, G.E.; Ferrell, R.E. Specific genetic markers of endurance performance and vo2max. Exerc. Sport Sci. Rev. 2001, 29, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Baker-Herman, T.L.; Fuller, D.D.; Bavis, R.W.; Zabka, A.G.; Golder, F.J.; Doperalski, N.J.; Johnson, R.A.; Watters, J.J.; Mitchell, G.S. Bdnf is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat. Neurosci. 2004, 7, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Clow, C.; Jasmin, B.J. Brain-derived neurotrophic factor regulates satellite cell differentiation and skeltal muscle regeneration. Mol. Biol. Cell 2010, 21, 2182–2190. [Google Scholar] [CrossRef] [PubMed]
- Cunha, C.; Brambilla, R.; Thomas, K.L. A simple role for bdnf in learning and memory? Front. Mol. Neurosci. 2010, 3. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.J.; Reichardt, L.F. Trk receptors: Roles in neuronal signal transduction. Ann. Rev. Biochem. 2003, 72, 609–642. [Google Scholar] [CrossRef] [PubMed]
- Poo, M.M. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2001, 2, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.M.; Das, D.; Taylor, J.L.; Noda, A.; Yesavage, J.A.; Salehi, A. Bdnf polymorphism predicts the rate of decline in skilled task performance and hippocampal volume in healthy individuals. Transl. Psychiatry 2011, 1, e51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Poo, M.M. Localized synaptic potentiation by bdnf requires local protein synthesis in the developing axon. Neuron 2002, 36, 675–688. [Google Scholar] [CrossRef]
- Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2006, 361, 1545–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korte, M.; Carroll, P.; Wolf, E.; Brem, G.; Thoenen, H.; Bonhoeffer, T. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA 1995, 92, 8856–8860. [Google Scholar] [CrossRef] [PubMed]
- Pringle, A.K.; Sundstrom, L.E.; Wilde, G.J.; Williams, L.R.; Iannotti, F. Brain-derived neurotrophic factor, but not neurotrophin-3, prevents ischaemia-induced neuronal cell death in organotypic rat hippocampal slice cultures. Neurosci. Lett. 1996, 211, 203–206. [Google Scholar] [CrossRef]
- Nakata, H.; Nakamura, S. Brain-derived neurotrophic factor regulates ampa receptor trafficking to post-synaptic densities via ip3r and trpc calcium signaling. FEBS Lett. 2007, 581, 2047–2054. [Google Scholar] [CrossRef] [PubMed]
- Kleim, J.A.; Chan, S.; Pringle, E.; Schallert, K.; Procaccio, V.; Jimenez, R.; Cramer, S.C. Bdnf val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat. Neurosci. 2006, 9, 735–737. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, M.; Laakso, A.; Nagren, K.; Rinne, J.O.; Pohjalainen, T.; Hietala, J. C957t polymorphism of the dopamine d2 receptor (drd2) gene affects striatal drd2 availability in vivo. Mol. Psychiatry 2004, 9, 1060–1061. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, M.M.; Lumme, V.; Hirvonen, J.; Pesonen, U.; Nagren, K.; Vahlberg, T.; Scheinin, H.; Hietala, J. C957t polymorphism of the human dopamine d2 receptor gene predicts extrastriatal dopamine receptor availability in vivo. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2009, 33, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Pruessner, J.C.; Champagne, F.; Meaney, M.J.; Dagher, A. Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: A positron emission tomography study using [11c]raclopride. J. Neurosci. 2004, 24, 2825–2831. [Google Scholar] [CrossRef] [PubMed]
- Fiocco, A.J.; Lindquist, K.; Ferrell, R.; Li, R.; Simonsick, E.M.; Nalls, M.; Harris, T.B.; Yaffe, K.; Health, A.B.C.S. Comt genotype and cognitive function: An 8-year longitudinal study in white and black elders. Neurology 2010, 74, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Noohi, F.; Boyden, N.B.; Kwak, Y.; Humfleet, J.; Burke, D.T.; Muller, M.L.; Bohnen, N.I.; Seidler, R.D. Association of comt val158met and drd2 g>t genetic polymorphisms with individual differences in motor learning and performance in female young adults. J. Neurophysiol. 2014, 111, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Wackerhage, H.; Miah, A.; Harris, R.C.; Montgomery, H.E.; Williams, A.G. Genetic research and testing in sport and exercise science: A review of the issues. J. Sports Sci. 2009, 27, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Vlahovich, N.; Fricker, P.A.; Brown, M.A.; Hughes, D. Ethics of genetic testing and research in sport: A position statement from the Australian Institute of Sport. Br. J. Sports Med. 2017, 51, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Guth, L.M.; Roth, S.M. Genetic influence on athletic performance. Curr. Opin. Pediatr. 2013, 25, 653–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webborn, N.; Williams, A.; McNamee, M.; Bouchard, C.; Pitsiladis, Y.; Ahmetov, I.; Ashley, E.; Byrne, N.; Camporesi, S.; Collins, M.; et al. Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement. Br. J. Sports Med. 2015, 49, 1486–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlahovich, N.; Hughes, D.C.; Griffiths, L.R.; Wang, G.; Pitsiladis, Y.P.; Pigozzi, F.; Bachl, N.; Eynon, N. Genetic testing for exercise prescription and injury prevention: AIS-Athlome consortium-FIMS joint statement. BMC Genom. 2017, 18 (Suppl. 8), 818. [Google Scholar] [CrossRef] [PubMed]
Gene | Sport/Discipline | Outcome of Study | Reference |
---|---|---|---|
ACE | Basketball | Higher proportion of I allele frequency than D allele amongst athletes | [90] |
Cross country skiing | No significance reported | [67] | |
Cycling | Significantly higher I allele frequency among long-distance Spanish, male, elite cyclists | [65] | |
Higher proportion of D allele frequency than I allele amongst athletes | [90] | ||
Endurance sports | Increased frequency of DD genotype in endurance athletes compared to power athletes | [84] | |
Handball | Significantly higher I allele frequency among Spanish, male, elite handball players (national team) | [65] | |
Power sports | Decreased frequency of DD genotype in elite Korean power athletes compared to a control group | [85] | |
Running (long distance) | Increasing I allele frequency with increasing race distance in elite British and Spanish runners | [18,65] | |
No significance reported | [96] | ||
Running (short distance) | Increased DD genotype and D allele frequency in sprinters | [18,19] | |
No significance reported | [94,95] | ||
Rhythmic gymnastics | D allele was more frequent in elite level gymnastics compared to sub-elite athletes and controls | [108] | |
Soccer | Significantly lower DD, greater ID genotype in Lithuanian professional soccer players | [78] | |
Significantly higher frequency of ID genotype and lower frequency of II genotype in soccer players compared to endurance runners | [109] | ||
Swimming | Significant association between the DD genotype and elite, short distance swimmers | [69,110] | |
Significantly greater I allele in middle distance Russian swimmers. Increasing I allele frequency with increasing race distance in elite long distance swimmers | [67,68] | ||
No significance reported | [95] | ||
Volleyball | Higher proportion of I allele frequency than D allele amongst athletes | [90] | |
No significance reported | [95] | ||
Weightlifting | Equal distribution of D and I alleles amongst athletes | [90] | |
ACTN3 | Endurance sports | No significance reported | [96,111] |
Higher frequency of the XX genotype in the endurance athletes | [17,112] | ||
Power sports | Significantly lower frequencies of the XX genotype, and higher frequency of the RR genotype, compared to the control groups | [16,17,100,113,114] | |
Soccer | Significantly higher proportion of the RR genotype than the control group | [115] | |
Swimming | No significance reported | [95,116] | |
Running (short distance) | No significance reported | [94,95,115] | |
No significantly less XX genotype in sprinters. Increased frequency of RR and R allele in elite sprinters compared to control group | [16,21,97,112] | ||
Volleyball | No significance reported | [95,117] | |
ADRB1 | Endurance sports | C allele is associated with increased VO2max, exercise time, and exhaustion. G allele is associated with decreased VO2max | [23,74,118] |
PPARG-C1A | Endurance sports | Endurance athletes have a higher proportion of GG genotype, and a lower frequency of A allele | [21,22] |
Sprinting | GG genotype is associated with increased endurance ability and AA genotype may be associated with impaired aerobic capacity | [21,22] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacob, Y.; Spiteri, T.; Hart, N.H.; Anderton, R.S. The Potential Role of Genetic Markers in Talent Identification and Athlete Assessment in Elite Sport. Sports 2018, 6, 88. https://doi.org/10.3390/sports6030088
Jacob Y, Spiteri T, Hart NH, Anderton RS. The Potential Role of Genetic Markers in Talent Identification and Athlete Assessment in Elite Sport. Sports. 2018; 6(3):88. https://doi.org/10.3390/sports6030088
Chicago/Turabian StyleJacob, Ysabel, Tania Spiteri, Nicolas H. Hart, and Ryan S. Anderton. 2018. "The Potential Role of Genetic Markers in Talent Identification and Athlete Assessment in Elite Sport" Sports 6, no. 3: 88. https://doi.org/10.3390/sports6030088