Force-Time Differences between Ballistic and Non-Ballistic Half-Squats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. 1RM Back-Squat Testing Session
2.3. 1RM Concentric-Only Half-Squat Testing Session
2.4. Ballistic and Non-Ballistic Testing Sessions
2.5. Data and Statistical Analyses
3. Results
3.1. Intent Effects
3.2. Load Effects
3.3. Intent x Load Interaction Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The importance of muscular strength: Training considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 2—Training considerations for improving maximal power production. Sports Med. 2011, 41, 125–146. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.J.; Murphy, A.J.; Walshe, A. The specificity of strength training: The effect of posture. Eur. J. Appl. Physiol. 1996, 73, 346–352. [Google Scholar] [CrossRef]
- Zatsiorsky, V. Science and Practice of Strength Training; Human Kinetics: Champaign, IL, USA, 1995. [Google Scholar]
- Bazyler, C.D.; Sato, K.; Wassinger, C.A.; Lamont, H.S.; Stone, M.H. The efficacy of incorporating partial squats in maximal strength training. J. Strength Cond. Res. 2014, 28, 3024–3032. [Google Scholar] [CrossRef] [PubMed]
- Rhea, M.R.; Kenn, J.G.; Peterson, M.D.; Massey, D.; Simão, R.; Marin, P.J.; Favero, M.; Cardozo, D.; Krein, D. Joint-angle specific strength adaptations influence improvements in power in highly trained athletes. Hum. Mov. 2016, 17, 43–49. [Google Scholar] [CrossRef]
- Clark, R.A.; Humphries, B.; Hohmann, E.; Bryant, A.L. The influence of variable range of motion training on neuromuscular performance and control of external loads. J. Strength Cond. Res. 2011, 25, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Bryant, A.L.; Humphries, B. An examination of strength and concentric work ratios during variable range of motion training. J. Strength Cond. Res. 2008, 22, 1716–1719. [Google Scholar] [CrossRef] [PubMed]
- Harris, G.R.; Stone, M.H.; O’Bryant, H.S.; Proulx, C.M.; Johnson, R.L. Short-term performance effects of high power, high force, or combined weight-training methods. J. Strength Cond. Res. 2000, 14, 14–20. [Google Scholar]
- Stone, M.H.; Potteiger, J.A.; Pierce, K.C.; Proulx, C.M.; O’Bryant, H.S.; Johnson, R.L.; Stone, M.E. Comparison of the effects of three different weight-training programs on the one repetition maximum squat. J. Strength Cond. Res. 2000, 14, 332–337. [Google Scholar]
- Newton, R.U.; Kraemer, W.J.; Häkkinen, K.; Humphries, B.; Murphy, A.J. Kinematics, kinetics, and muscle activation during explosive upper body movements. J. Appl. Biomech. 1996, 12, 31–43. [Google Scholar] [CrossRef]
- Lake, J.P.; Lauder, M.A.; Smith, N.A.; Shorter, K.A. A comparison of ballistic and non-ballistic lower-body resistance exercise and the methods used to identify their positive lifting phases. J. Appl. Biomech. 2012, 28, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Pestaña-Melero, F.L.; Jaric, S.; Pérez-Castilla, A.; Rojas, F.J.; García-Ramos, A. Comparison of mechanical outputs between the traditional and ballistic bench press: Role of the type of variable. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McCaulley, G.O.; Triplett, N.T.; McBride, J.M. Optimal loading for maximal power output during lower-body resistance exercises. Med. Sci. Sports Exerc. 2007, 39, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Sole, C.J. Force-time curve comparison between weightlifting derivatives. Int. J. Sports Physiol. Perform. 2017, 12, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Jones, P.A.; Udall, R. The effect of load and sex on kinematic and kinetic variables during the mid-thigh clean pull. Sports Biomech. 2015, 14, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Udall, R.; Jones, P.A. The effect of loading on kinematic and kinetic variables during the midthigh clean pull. J. Strength Cond. Res. 2012, 26, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Wright, G.A.; Kernozek, T.W.; Kline, D.E. Kinetic comparison of the power development between power clean variations. J. Strength Cond. Res. 2014, 28, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.U.; Murphy, A.J.; Humphries, B.J.; Wilson, G.J.; Kraemer, W.J.; Häkkinen, K. Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur. J. Appl. Physiol. 1997, 75, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Power-time, force-time, and velocity-time curve analysis during the jump squat: Impact of load. J. Appl. Biomech. 2008, 24, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Validation of power measurement techniques in dynamic lower body resistance exercises. J. Appl. Biomech. 2007, 23, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.A.; Kraemer, W.J.; Spiering, B.A.; Volek, J.S.; Anderson, J.M.; Maresh, C.M. Maximal power at different percentages of one repetition maximum: Influence of resistance and gender. J. Strength Cond. Res. 2007, 21, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Fernández, C.; García-Ramos, A.; Jiménez-Reyes, P. Load-velocity profiling in the military press exercise: Effects of gender and training. Int. J. Sports Sci. Coach. 2017. [Google Scholar] [CrossRef]
- Torrejón, A.; Balsalobre-Fernández, C.; Haff, G.G.; García-Ramos, A. The load-velocity profile differs more between men and women than between individuals with different strength levels. Sports Biomech. 2018. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Medina, L.; González-Badillo, J.J.; Perez, C.E.; Pallarés, J.G. Velocity-and power-load relationships of the bench pull vs. Bench press exercises. Int. J. Sports Med. 2014, 35, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Pearson, S.N.; Cronin, J.B.; Hume, P.A.; Slyfield, D. Kinematics and kinetics of the bench-press and bench-pull exercises in a strength-trained sporting population. Sports Biomech. 2009, 8, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Soriano, M.A.; Suchomel, T.J.; Marin, P.J. The optimal load for improving maximal power production during upper-body exercises: A meta-analysis. Sports Med. 2017, 47, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Soriano, M.A.; Jiménez-Reyes, P.; Rhea, M.R.; Marín, P.J. The optimal load for maximal power production during lower-body resistance exercises: A meta-analysis. Sports Med. 2015, 45, 1191–1205. [Google Scholar] [CrossRef] [PubMed]
- Jandacka, D.; Uchytil, J. Optimal load maximizes the mean mechanical power output during upper extremity exercise in highly trained soccer players. J. Strength Cond. Res. 2011, 25, 2764–2772. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Garceau, L.R.; Wurm, B.J.; Suchomel, T.J.; Duran, K.; Petushek, E.J. The optimal back squat load for potential osteogenesis. J. Strength Cond. Res. 2012, 26, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Moir, G.L.; Gollie, J.M.; Davis, S.E.; Guers, J.J.; Witmer, C.A. The effects of load on system and lower-body joint kinetics during jump squats. Sports Biomech. 2012, 11, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Dayne, A.M.; McBride, J.M.; Nuzzo, J.L.; Triplett, N.T.; Skinner, J.; Burr, A. Power output in the jump squat in adolescent male athletes. J. Strength Cond. Res. 2011, 25, 585–589. [Google Scholar] [CrossRef] [PubMed]
- McBride, J.M.; Haines, T.L.; Kirby, T.J. Effect of loading on peak power of the bar, body, and system during power cleans, squats, and jump squats. J. Sports Sci. 2011, 29, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.; Nance, S.; Moore, M. The load that maximizes the average mechanical power output during jump squats in power-trained athletes. J. Strength Cond. Res. 2001, 15, 92–97. [Google Scholar] [PubMed]
- Bevan, H.R.; Bunce, P.J.; Owen, N.J.; Bennett, M.A.; Cook, C.J.; Cunningham, D.J.; Newton, R.U.; Kilduff, L.P. Optimal loading for the development of peak power output in professional rugby players. J. Strength Cond. Res. 2010, 24, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Kipp, K.; Malloy, P.J.; Smith, J.; Giordanelli, M.D.; Kiely, M.T.; Geiser, C.F.; Suchomel, T.J. Mechanical demands of the hang power clean and jump shrug: A joint-level perspective. J. Strength Cond. Res. 2018, 32, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Beckham, G.K.; Wright, G.A. The impact of load on lower body performance variables during the hang power clean. Sports Biomech. 2014, 13, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Allen, M.; Graham-Smith, P. Kinetic comparisons during variations of the power clean. J. Strength Cond. Res. 2011, 25, 3269–3273. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Allen, M.; Graham-Smith, P. Comparisons of peak ground reaction force and rate of force development during variations of the power clean. J. Strength Cond. Res. 2011, 25, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Hori, N.; Newton, R.U.; Andrews, W.A.; Kawamori, N.; McGuigan, M.R.; Nosaka, K. Does performance of hang power clean differentiate performance of jumping, sprinting, and changing of direction? J. Strength Cond. Res. 2008, 22, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Kilduff, L.P.; Bevan, H.; Owen, N.; Kingsley, M.I.; Bunce, P.; Bennett, M.; Cunningham, D. Optimal loading for peak power output during the hang power clean in professional rugby players. Int. J. Sports Physiol. Perform. 2007, 2, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Kawamori, N.; Crum, A.J.; Blumert, P.A.; Kulik, J.R.; Childers, J.T.; Wood, J.A.; Stone, M.H.; Haff, G.G. Influence of different relative intensities on power output during the hang power clean: Identification of the optimal load. J. Strength Cond. Res. 2005, 19, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Fletcher, C.; McMahon, J.J. Determination of optimal loading during the power clean, in collegiate athletes. J. Strength Cond. Res. 2012, 26, 2970–2974. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Sole, C.J. Power-time curve comparison between weightlifting derivatives. J. Sports Sci. Med. 2017, 16, 407–413. [Google Scholar] [PubMed]
- Suchomel, T.J.; Beckham, G.K.; Wright, G.A. Effect of various loads on the force-time characteristics of the hang high pull. J. Strength Cond. Res. 2015, 29, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Beckham, G.K.; Wright, G.A. Lower body kinetics during the jump shrug: Impact of load. J. Trainol. 2013, 2, 19–22. [Google Scholar] [CrossRef]
- Ammar, A.; Riemann, B.L.; Masmoudi, L.; Blaumann, M.; Abdelkarim, O.; Hökelmann, A. Kinetic and kinematic patterns during high intensity clean movement: Searching for optimal load. J. Sports Sci. 2018, 36, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.; Nance, S.; Moore, M. The load that maximizes the average mechanical power output during explosive bench press throws in highly trained athletes. J. Strength Cond. Res. 2001, 15, 20–24. [Google Scholar] [PubMed]
- Suchomel, T.J.; Sato, K.; DeWeese, B.H.; Ebben, W.P.; Stone, M.H. Relationships between potentiation effects following ballistic half-squats and bilateral symmetry. Int. J. Sports Physiol. Perform. 2015, 11, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Sato, K.; DeWeese, B.H.; Ebben, W.P.; Stone, M.H. Potentiation effects of half-squats performed in a ballistic or non-ballistic manner. J. Strength Cond. Res. 2016, 30, 1652–1660. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Sato, K.; DeWeese, B.H.; Ebben, W.P.; Stone, M.H. Potentiation following ballistic and non-ballistic complexes: The effect of strength level. J. Strength Cond. Res. 2016, 30, 1825–1833. [Google Scholar] [CrossRef] [PubMed]
- Schmidtbleicher, D. Training for power events. In Strength and Power in Sport; Komi, P.V., Ed.; Blackwell Scientific: London, UK, 1992; pp. 381–395. [Google Scholar]
- Mann, R. The mechanics of Sprinting and Hurdling; Compusport: Orlando, FL, USA, 1994. [Google Scholar]
- Sole, C.J.; Mizuguchi, S.; Sato, K.; Moir, G.L.; Stone, M.H. Phase characteristics of the countermovement jump force-time curve: A comparison of athletes by jumping ability. J. Strength Cond. Res. 2018, 32, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Beckham, G.K.; Sato, K.; Santana, H.A.P.; Mizuguchi, S.; Haff, G.G.; Stone, M.H. Effect of body position on force production during the isometric midthigh pull. J. Strength Cond. Res. 2018, 32, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. A Scale of Magnitude for Effect Statistics. 2014. Available online: http://www.sportsci.org/resource/stats/effectmag.html (accessed on 6 July 2018).
- Desmedt, J.E.; Godaux, E. Ballistic contractions in man: Characteristic recruitment pattern of single motor units of the tibialis anterior muscle. J. Physiol. 1977, 264, 673–693. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, M.; Duchateau, J.; Hainaut, K. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J. Physiol. 1998, 513, 295–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duchateau, J.; Hainaut, K. Mechanisms of muscle and motor unit adaptation to explosive power training. In Strength and Power in Sport, 2nd ed.; Paavov, V.K., Ed.; Blackwell Science: Oxford, UK, 2003; Volume 3, pp. 315–330. [Google Scholar]
- Garhammer, J.; Gregor, R. Propulsion forces as a function of intensity for weightlifting and vertical jumping. J. Strength Cond. Res. 1992, 6, 129–134. [Google Scholar]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
Load (% 1RM COHS) | PF | Imp50 | Imp90 | Imp200 | Imp250 | |||||
---|---|---|---|---|---|---|---|---|---|---|
ICC | TE% | ICC | TE% | ICC | TE% | ICC | TE% | ICC | TE% | |
Ballistic | ||||||||||
30% | 0.95 | 5.7 | 0.94 | 7.2 | 0.94 | 7.3 | 0.90 | 9.4 | 0.90 | 8.9 |
50% | 0.96 | 4.2 | 0.97 | 7.0 | 0.97 | 7.4 | 0.95 | 8.4 | 0.95 | 8.0 |
70% | 0.98 | 2.7 | 0.95 | 7.4 | 0.95 | 7.8 | 0.95 | 8.9 | 0.95 | 8.3 |
90% | 0.90 | 6.7 | 0.92 | 12.2 | 0.92 | 13.1 | 0.88 | 16.0 | 0.87 | 16.4 |
Non-ballistic | ||||||||||
30% | 0.95 | 3.9 | 0.93 | 7.4 | 0.93 | 7.5 | 0.95 | 7.7 | 0.95 | 7.5 |
50% | 0.99 | 2.4 | 0.98 | 6.8 | 0.97 | 7.5 | 0.95 | 10.3 | 0.95 | 10.8 |
70% | 0.98 | 2.8 | 0.94 | 9.6 | 0.94 | 9.4 | 0.95 | 8.7 | 0.95 | 8.7 |
90% | 0.98 | 2.5 | 0.98 | 6.0 | 0.97 | 6.4 | 0.95 | 7.8 | 0.95 | 8.4 |
Load (% 1RM COHS) | PF †‡ (N/kg) | Imp50 ‡ (Ns/kg) | Imp90 †‡ (Ns/kg) | Imp200 †‡ (Ns/kg) | Imp250 †‡ (Ns/kg) |
---|---|---|---|---|---|
Ballistic | |||||
30% | 30.8 ± 3.3 | 0.62 ± 0.1 | 1.20 ± 0.2 | 3.22 ± 0.5 | 4.29 ± 0.6 |
50% | 34.3 ± 2.8 | 0.68 ± 0.1 | 1.30 ± 0.2 | 3.47 ± 0.6 | 4.61 ± 0.8 |
70% | 37.7 ± 2.9 | 0.73 ± 0.2 | 1.42 ± 0.3 | 3.76 ± 0.7 | 5.00 ± 0.9 |
90% | 41.2 ± 5.0 | 0.74 ± 0.2 | 1.44 ± 0.3 | 3.85 ± 0.7 | 5.12 ± 0.9 |
Non-ballistic | |||||
30% | 21.6 ± 2.0 | 0.61 ± 0.1 | 1.15 ± 0.2 | 2.99 ± 0.5 | 3.86 ± 0.7 |
50% | 26.1 ± 2.9 | 0.65 ± 0.1 | 1.24 ± 0.2 | 3.26 ± 0.6 | 4.31 ± 0.8 |
70% | 30.6 ± 3.3 | 0.68 ± 0.2 | 1.30 ± 0.3 | 3.42 ± 0.7 | 4.55 ± 0.9 |
90% | 36.0 ± 3.6 | 0.73 ± 0.2 | 1.40 ± 0.3 | 3.65 ± 0.8 | 4.83 ± 1.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchomel, T.J.; Taber, C.B.; Sole, C.J.; Stone, M.H. Force-Time Differences between Ballistic and Non-Ballistic Half-Squats. Sports 2018, 6, 79. https://doi.org/10.3390/sports6030079
Suchomel TJ, Taber CB, Sole CJ, Stone MH. Force-Time Differences between Ballistic and Non-Ballistic Half-Squats. Sports. 2018; 6(3):79. https://doi.org/10.3390/sports6030079
Chicago/Turabian StyleSuchomel, Timothy J., Christopher B. Taber, Christopher J. Sole, and Michael H. Stone. 2018. "Force-Time Differences between Ballistic and Non-Ballistic Half-Squats" Sports 6, no. 3: 79. https://doi.org/10.3390/sports6030079
APA StyleSuchomel, T. J., Taber, C. B., Sole, C. J., & Stone, M. H. (2018). Force-Time Differences between Ballistic and Non-Ballistic Half-Squats. Sports, 6(3), 79. https://doi.org/10.3390/sports6030079