Is a Bimodal Force-Time Curve Related to Countermovement Jump Performance?
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Design
2.3. Data Collection
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Mandic, R.; Jakovljevic, S.; Jaric, S. Effects of countermovement depth on kinematic and kinetic patterns of maximum vertical jumps. J. Electromyogr. Kinesiol. 2015, 25, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.R.; Rumpf, M.C.; Hertzog, M.; Castagna, C.; Farooq, A.; Girard, O.; Hader, K. Acute and residual soccer match-related fatigue: A systematic review and meta-analysis. Sports Med. 2017, 1–45. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Rowell, A.E.; Aughey, R.J.; Hopkins, W.G.; Stewart, A.M.; Cormack, S.J. Identification of sensitive measures of recovery following external load from football match play. Int. J. Sports Physiol. Perform. 2017, 1–44. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Adaptations in athletic performance after ballistic power versus strength training. Med. Sci. Sports Exerc. 2010, 42, 1582–1598. [Google Scholar] [CrossRef] [PubMed]
- Adamson, G.T.; Whitney, R.J. Critical appraisal of jumping as a measure of human power. Med. Sport 1971, 6, 208–211. [Google Scholar]
- Sole, C.J.; Mizuguchi, S.; Sato, K.; Moir, G.L.; Stone, M.H. Phase characteristics of the countermovement jump force-time curve: A comparison of athletes by jumping ability. J. Strength Cond. Res. 2018, 32, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Garhammer, J.; Gregor, R. Propulsion forces as a function of intensity for weightlifting and vertical jumping. J. Appl. Sport Sci. Res. 1992, 6, 129–134. [Google Scholar]
- Dowling, J.J.; Vamos, L. Identification of kinetic and temporal factors related to vertical jump performance. J. Appl. Biomech. 1993, 9, 95–110. [Google Scholar] [CrossRef]
- Payne, A.H.; Slater, W.J.; Telford, T. The use of a force platform in the study of athletic activities. A preliminary investigation. Ergonomics 1968, 11, 123–143. [Google Scholar] [CrossRef] [PubMed]
- Miller, D. A biomechanical analysis of the contribution of the trunk to standing vertical jump take-offs. In Physical Education, Sports and Sciences; Broekhov, J., Ed.; Microform Publications: Eugene, OR, USA, 1976; pp. 355–374. [Google Scholar]
- Kurz, G.; Stockinger, C.; Richter, A.; Potthast, W. Is the local minimum in the force time history in countermovement jumps related to jump performance. Portugese J. Sport Sci. 2011, 11 (Suppl. S2), 1009–1010. [Google Scholar]
- McMaster, D.T. A comparison unimodal and bimodal countermovement jump force-time curves. In Proceedings of the Sport and Exercise Science New Zealand Conference, Cambridge, New Zealand, 28–29 October 2016. [Google Scholar]
- Cormie, P.; McBride, J.M.; McCauley, G.O. Power-time, force-time, and velocity-time curve analysis of the countermovement jump: Impact of training. J. Strength Cond. Res. 2009, 23, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.I.; East, D.J. Kinematic and kinetic correlates of vertical jumping in women. In Biomechanics V-B; University Park Press: Baltimore, MD, USA, 1976; pp. 65–72. [Google Scholar]
- Smith, A.J. A Study of the Forces on the Body in Athletic Activities with Particular Reference to Jumping. Ph.D. Thesis, University of Leeds, Leeds, UK, 1972. [Google Scholar]
- Helwig, N.E.; Hong, S.; Hsiao-Wecksler, E.T.; Polk, J.D. Methods to temporally align gait cycle data. J. Biomech. 2011, 44, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Floría, P.; Gómez-Landero, L.A.; Suárez-Arrones, L.; Harrison, A.J. Kinetic and kinematic analysis for assessing the differences in countermovement jump performance in rugby players. J. Strength Cond. Res. 2016, 30, 2533–2539. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Influence of strength on magnitude and mechanisms of adaptation to power training. Med. Sci. Sports Exerc. 2010, 42, 1566–1581. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Murphy, S.; Rej, S.J.E.; Comfort, P. Countermovement jump phase characteristics of senior and academy rugby league players. Int. J. Sports Physiol. Perform. 2016, 1–23. [Google Scholar] [CrossRef] [PubMed]
- McBride, J.M.; Snyder, J.G. Mechanical efficiency and Force-time curve variation during repetitive jumping in trained and untrained jumpers. Eur. J. Appl. Physiol. 2012, 112, 3469–3477. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.E.; Goodman, C.L.; Capps, C.R.; Triplett, N.T.; Erickson, T.M.; McBride, J.M. Force- and power-time curve comparison during jumping between strength-matched male and female basketball players. Eur. J. Sport Sci. 2016, 1391, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Batterham, A.M.; Hopkins, W.G. Making meaningful inferences about magnitudes. Int. J. Sport Physiol. Perform. 2006, 1, 50–57. [Google Scholar] [CrossRef]
- Street, C.; McMillan, S.; Board, W.; Rasmussen, M.; Heneghan, J.M. Sources of error in determining countermovement jump height with the impulse method. J. Appl. Biomech. 2001, 17, 43–54. [Google Scholar] [CrossRef]
- McMahon, J.J.; Jones, P.A.; Dos’Santos, T.; Comfort, P. Influence of dynamic strength index on countermovement jump force-, power-, velocity-, and displacement-time curves. Sports 2017, 5, 72. [Google Scholar] [CrossRef]
- Feltner, M.E.; Fraschetti, D.J.; Crisp, R.J. Upper extremity augmentation of lower extremity kinetics during countermovement vertical jumps. J. Sports Sci. 1999, 17, 449–466. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Petushek, E.J. Using the reactive strength index modified to evaluate plyometric performance. J. Strength Cond. Res. 2010, 24, 1983–1987. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; Cormie, P.; McBride, J.M.; McCaulley, G.O. Power time, force time, and velocity time curve analysis during the jump squat: Impact of load. J. Appl. Biomech. 2008, 24, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. A spreadsheet for analysis of straightforward controlled trials. Sportscience 2003, 7, 1–8. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Castagna, C.; Iellamo, F.; Impellizzeri, F.M.; Manzi, V. Validity and reliability of the 45-15 test for aerobic fitness in young soccer players. Int. J. Sport. Physiol. Perform. 2014, 9, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Schultz, A.B.; Callaghan, S.J.; Jeffriess, M.D. The effects of isokinetic knee extensor and flexor strength on dynamic stability as measured by functional reaching. Isokinet. Exerc. Sci. 2013, 21, 301–309. [Google Scholar] [CrossRef]
- Hopkins, W.G. How to interpret changes in an athletic performance test. Sportscience 2004, 8, 1–7. [Google Scholar] [CrossRef]
- Mandic, R.; Knezevic, O.M.; Mirkov, D.M.; Jaric, S. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height. J. Hum. Kinet. 2016, 52, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Balster, W.; Er Lim, C.X.; Kong, P.W. Effects of a deeper countermovement on vertical jump biomechanics after three weeks of familiarisation—Preliminary findings. Int. J. Hum. Mov. Sports Sci. 2016, 4, 51–60. [Google Scholar] [CrossRef]
- Gheller, R.G.; Dal Pupo, J.; Ache-Dias, J.; Detanico, D.; Padulo, J.; dos Santos, S.G. Effect of different knee starting angles on intersegmental coordination and performance in vertical jumps. Hum. Mov. Sci. 2015, 42, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Kirby, T.J.; McBride, J.M.; Haines, T.L.; Dayne, A.M. Relative net vertical impulse determines jumping performance. J. Appl. Biomech. 2011, 27, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Salles, A.S.; Baltzopoulos, V.; Rittweger, J. Differential effects of countermovement magnitude and volitional effort on vertical jumping. Eur. J. Appl. Physiol. 2011, 111, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Markovic, S.; Mirkov, D.M.; Nedeljkovic, A.; Jaric, S. Body size and countermovement depth confound relationship between muscle power output and jumping performance. Hum. Mov. Sci. 2014, 33, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Bobbert, M.F. Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic? J. Appl. Physiol. 2012, 112, 1975–1983. [Google Scholar] [CrossRef] [PubMed]
- Winter, E.M.; Abt, G.; Brookes, F.B.C.; Challis, J.H.; Fowler, N.E.; Knudson, D.V.; Knuttgen, H.G.; Kraemer, W.J.; Lane, A.M.; van Mechelen, W.; et al. Misuse of “power” and other mechanical terms in sport and exercise science research. J. Strength Cond. Res. 2016, 30, 292–300. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Jones, P.A.; Suchomel, T.J.; Lake, J.; Comfort, P. Influence of Reactive Strength Index Modified on Force- and Power-Time Curves. Int. J. Sports Physiol. Perform. 2017, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Papaiakovou, G. Kinematic and kinetic differences in the execution of vertical jumps between people with good and poor ankle joint dorsiflexion. J. Sports Sci. 2013, 31, 1789–1796. [Google Scholar] [CrossRef] [PubMed]
- Brady, C.; Comyns, T.; Harrison, A.; Warrington, G. Focus of attention for diagnostic testing of the force-velocity curve. Strength Cond. J. 2017, 39, 57–70. [Google Scholar] [CrossRef]
- McMahon, J.; Rej, S.; Comfort, P. Sex Differences in Countermovement Jump Phase Characteristics. Sports 2017, 5, 8. [Google Scholar] [CrossRef]
Jump Variables | Unimodal (n = 16) | Bimodal (n = 17) | ES (±90% CI) |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Phases | |||
Unweighting Phase (ms) | 296 ± 22 | 320 ± 29 | 0.86, ±0.54 *** ↑ |
Braking Phase (ms) | 146 ± 27 | 157 ± 15 | 0.56, ±0.59 ** ↑ |
Propulsion Phase (ms) | 244 ± 28 | 279 ± 23 | 1.16, ±0.50 **** ↑ |
Forces | |||
Propulsion Peak Force (N·kg−1) | 26.7 ± 2.2 | 25.2 ± 1.6 | −0.74, ±0.56 ** ↓ |
Propulsion Mean Force (N·kg−1) | 20.7 ± 1.7 | 19.5 ± 1.2 | −0.79, ±0.56 *** ↓ |
Unweighting Minimum Force (N·kg−1) | 1.8 ± 1.2 | 1.0 ± 0.7 | −0.69, ±0.57 ** ↓ |
Braking End Force (N·kg−1) | 25.9 ± 2.3 | 25.1 ± 1.6 | −0.41, ±0.59 * ↓ |
Velocities | |||
Braking Minimum Velocity (m·s−1) | 1.39 ± 0.22 | 1.58 ± 0.13 | 0.95, ±0.55 *** ↑ |
Propulsion Peak Velocity (m·s−1) | 2.79 ± 0.19 | 2.85 ± 0.18 | 0.32, ±0.59 |
Displacements | |||
Braking COM Displacement (%LL) | 34.4 ± 4.6 | 40.9 ± 4.7 | 1.13, ±0.50 **** ↑ |
Jump Height (cm) | 34.5 ± 5.7 | 36.0 ± 5.2 | 0.28, ±0.59 |
Composite Variables | |||
RSImod (cm·s−1) | 50.7 ± 9.4 | 48.0 ± 8.0 | −0.30, ±0.59 |
Negative to Positive Impulse (%) | 37.8 ± 3.9 | 40.2 ± 1.7 | 0.74, ±0.58 ** ↑ |
Jump Variables | Low (n = 18) | High (n = 15) | ES (±90% CI) |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Phases | |||
Unweighting Phase (ms) | 302 ± 30 | 315 ± 25 | 0.49, ±0.57 ** ↑ |
Braking Phase (ms) | 147 ± 19 | 157 ± 25 | 0.40, ±0.60 * ↑ |
Propulsion Phase (ms) | 262 ± 33 | 262 ± 28 | 0.03, ±0.59 |
Forces | |||
Propulsion Peak Force (N·kg−1) | 25.7 ± 2.3 | 26.2 ± 1.8 | 0.24, ±0.59 |
Propulsion Mean Force (N·kg−1) | 19.5 ± 1.5 | 20.7 ± 1.4 | 0.80, ±0.54 *** ↑ |
Unweighting Minimum Force (N·kg−1) | 1.4 ± 0.8 | 1.4 ± 1.3 | −0.27, ±0.62 |
Braking End Force (N·kg−1) | 25.2 ± 2.0 | 25.8 ± 2.0 | 0.30, ±0.60 |
Velocities | |||
Braking Minimum Velocity (m·s−1) | 1.45 ± 0.20 | 1.54 ± 0.20 | 0.45, ±0.59 ** ↑ |
Propulsion Peak Velocity (m·s−1) | 2.68 ± 0.12 | 2.99 ± 0.09 | 1.62, ±0.34 ****↑ |
Displacements | |||
Braking COM Displacement (%LL) | 35.7 ± 5.9 | 40.2 ± 4.2 | 0.82, ±0.53 *** ↑ |
Jump Height (cm) | 31.2 ± 3.2 | 40.2 ± 2.9 | 1.62, ±0.34 **** ↑ |
Composite Variables | |||
RSImod (cm·s−1) | 44.4 ± 6.8 | 55.2 ± 7.0 | 1.22, ±0.49 **** ↑ |
Negative to Positive Impulse (%) | 40.0 ± 2.9 | 37.9 ± 3.1 | −0.62, ±0.58 ** ↓ |
Jump Variables | Bimodal Low (n = 8) | Bimodal High (n = 9) | ES (±90% CI) |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Phases | |||
Unweighting Phase (ms) | 319 ± 34 | 320 ± 27 | 0.07, ±0.89 |
Braking Phase (ms) | 156 ± 16 | 157 ± 16 | 0.07, ±0.88 |
Propulsion Phase (ms) | 284 ± 25 | 276 ± 21 | −0.34, ±0.88 |
Forces | |||
Propulsion Peak Force (N·kg−1) | 24.6 ± 1.6 | 25.7 ± 1.6 | 0.66, ±0.83 ** ↑ |
Propulsion Mean Force (N·kg−1) | 18.7 ± 1.1 | 20.1 ± 0.8 | 1.22, ±0.73 *** ↑ |
Unweighting Minimum Force (N·kg−1) | 1.1 ± 0.8 | 0.9 ± 0.5 | −0.19, ±0.88 |
Braking End Force (N·kg−1) | 24.5 ± 1.5 | 25.6 ± 1.6 | 0.67, ±0.83 ** ↑ |
Velocities | |||
Braking Minimum Velocity (m·s−1) | 1.53 ± 0.15 | 1.63 ± 0.09 | 0.81, ±0.85 ** ↑ |
Propulsion Peak Velocity (m·s−1) | 2.69 ± 0.15 | 2.99 ± 0.06 | 1.56, ±0.66 **** ↑ |
Displacements | |||
Braking COM Displacement (%LL) | 39.3 ± 5.4 | 42.3 ± 3.6 | 0.67, ±0.86 ** ↑ |
Jump Height (cm) | 31.4 ± 3.8 | 40.1 ± 1.7 | 1.59, ±0.65 **** ↑ |
Composite Variables | |||
RSImod (cm·s−1) | 41.8 ± 6.6 | 53.5 ± 4.4 | 1.37, ±0.72 *** ↑ |
Negative to Positive Impulse (%) | 41.2 ± 1.7 | 39.3 ± 1.2 | −1.13, ±0.75 *** ↓ |
Jump Variables | Unimodal Low (n = 10) | Unimodal High (n = 6) | ES (±90% CI) |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Phases | |||
Unweighting Phase (ms) | 289 ± 18 | 308 ± 24 | 0.86, ±0.89 ** ↑ |
Braking Phase (ms) | 141 ± 19 | 156 ± 37 | 0.07, ±0.88 |
Propulsion Phase (ms) | 245 ± 30 | 243 ± 28 | −0.34, ±0.88 |
Forces | |||
Propulsion Peak Force (N·kg−1) | 26.6 ± 2.4 | 26.9 ± 2.0 | 0.15, ±0.91 |
Propulsion Mean Force (N·kg−1) | 20.2 ± 1.5 | 21.7 ± 1.7 | 0.87, ±0.88 ** ↑ |
Unweighting Minimum Force (N·kg−1) | 1.6 ± 0.8 | 2.0 ± 1.8 | −0.17, ±1.18 |
Braking End Force (N·kg−1) | 25.8 ± 2.3 | 26.2 ± 2.6 | 0.14, ±1.00 |
Velocities | |||
Braking Minimum Velocity (m·s−1) | 1.38 ± 0.21 | 1.41 ± 0.25 | 0.11, ±1.00 |
Propulsion Peak Velocity (m·s−1) | 2.67 ± 0.10 | 2.99 ± 0.13 | 1.65, ±0.62 **** ↑ |
Displacements | |||
Braking COM Displacement (%LL) | 32.9 ± 4.7 | 37.1 ± 3.2 | 0.91, ±0.73 ** ↑ |
Jump Height (cm) | 31.0 ± 2.8 | 40.4 ± 4.3 | 1.63, ±0.65 **** ↑ |
Composite Variables | |||
RSImod (cm·s−1) | 46.5 ± 6.5 | 57.9 ± 9.6 | 1.20, ±0.82 *** ↑ |
Negative to Positive Impulse (%) | 39.0 ± 3.4 | 35.9 ± 4.2 | −0.78, ±0.98 ** ↓ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kennedy, R.A.; Drake, D. Is a Bimodal Force-Time Curve Related to Countermovement Jump Performance? Sports 2018, 6, 36. https://doi.org/10.3390/sports6020036
Kennedy RA, Drake D. Is a Bimodal Force-Time Curve Related to Countermovement Jump Performance? Sports. 2018; 6(2):36. https://doi.org/10.3390/sports6020036
Chicago/Turabian StyleKennedy, Rodney A., and David Drake. 2018. "Is a Bimodal Force-Time Curve Related to Countermovement Jump Performance?" Sports 6, no. 2: 36. https://doi.org/10.3390/sports6020036
APA StyleKennedy, R. A., & Drake, D. (2018). Is a Bimodal Force-Time Curve Related to Countermovement Jump Performance? Sports, 6(2), 36. https://doi.org/10.3390/sports6020036