Is a Bimodal Force-Time Curve Related to Countermovement Jump Performance?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Design
2.3. Data Collection
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Mandic, R.; Jakovljevic, S.; Jaric, S. Effects of countermovement depth on kinematic and kinetic patterns of maximum vertical jumps. J. Electromyogr. Kinesiol. 2015, 25, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.R.; Rumpf, M.C.; Hertzog, M.; Castagna, C.; Farooq, A.; Girard, O.; Hader, K. Acute and residual soccer match-related fatigue: A systematic review and meta-analysis. Sports Med. 2017, 1–45. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Rowell, A.E.; Aughey, R.J.; Hopkins, W.G.; Stewart, A.M.; Cormack, S.J. Identification of sensitive measures of recovery following external load from football match play. Int. J. Sports Physiol. Perform. 2017, 1–44. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Adaptations in athletic performance after ballistic power versus strength training. Med. Sci. Sports Exerc. 2010, 42, 1582–1598. [Google Scholar] [CrossRef] [PubMed]
- Adamson, G.T.; Whitney, R.J. Critical appraisal of jumping as a measure of human power. Med. Sport 1971, 6, 208–211. [Google Scholar]
- Sole, C.J.; Mizuguchi, S.; Sato, K.; Moir, G.L.; Stone, M.H. Phase characteristics of the countermovement jump force-time curve: A comparison of athletes by jumping ability. J. Strength Cond. Res. 2018, 32, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Garhammer, J.; Gregor, R. Propulsion forces as a function of intensity for weightlifting and vertical jumping. J. Appl. Sport Sci. Res. 1992, 6, 129–134. [Google Scholar]
- Dowling, J.J.; Vamos, L. Identification of kinetic and temporal factors related to vertical jump performance. J. Appl. Biomech. 1993, 9, 95–110. [Google Scholar] [CrossRef]
- Payne, A.H.; Slater, W.J.; Telford, T. The use of a force platform in the study of athletic activities. A preliminary investigation. Ergonomics 1968, 11, 123–143. [Google Scholar] [CrossRef] [PubMed]
- Miller, D. A biomechanical analysis of the contribution of the trunk to standing vertical jump take-offs. In Physical Education, Sports and Sciences; Broekhov, J., Ed.; Microform Publications: Eugene, OR, USA, 1976; pp. 355–374. [Google Scholar]
- Kurz, G.; Stockinger, C.; Richter, A.; Potthast, W. Is the local minimum in the force time history in countermovement jumps related to jump performance. Portugese J. Sport Sci. 2011, 11 (Suppl. S2), 1009–1010. [Google Scholar]
- McMaster, D.T. A comparison unimodal and bimodal countermovement jump force-time curves. In Proceedings of the Sport and Exercise Science New Zealand Conference, Cambridge, New Zealand, 28–29 October 2016. [Google Scholar]
- Cormie, P.; McBride, J.M.; McCauley, G.O. Power-time, force-time, and velocity-time curve analysis of the countermovement jump: Impact of training. J. Strength Cond. Res. 2009, 23, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.I.; East, D.J. Kinematic and kinetic correlates of vertical jumping in women. In Biomechanics V-B; University Park Press: Baltimore, MD, USA, 1976; pp. 65–72. [Google Scholar]
- Smith, A.J. A Study of the Forces on the Body in Athletic Activities with Particular Reference to Jumping. Ph.D. Thesis, University of Leeds, Leeds, UK, 1972. [Google Scholar]
- Helwig, N.E.; Hong, S.; Hsiao-Wecksler, E.T.; Polk, J.D. Methods to temporally align gait cycle data. J. Biomech. 2011, 44, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Floría, P.; Gómez-Landero, L.A.; Suárez-Arrones, L.; Harrison, A.J. Kinetic and kinematic analysis for assessing the differences in countermovement jump performance in rugby players. J. Strength Cond. Res. 2016, 30, 2533–2539. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Influence of strength on magnitude and mechanisms of adaptation to power training. Med. Sci. Sports Exerc. 2010, 42, 1566–1581. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Murphy, S.; Rej, S.J.E.; Comfort, P. Countermovement jump phase characteristics of senior and academy rugby league players. Int. J. Sports Physiol. Perform. 2016, 1–23. [Google Scholar] [CrossRef] [PubMed]
- McBride, J.M.; Snyder, J.G. Mechanical efficiency and Force-time curve variation during repetitive jumping in trained and untrained jumpers. Eur. J. Appl. Physiol. 2012, 112, 3469–3477. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.E.; Goodman, C.L.; Capps, C.R.; Triplett, N.T.; Erickson, T.M.; McBride, J.M. Force- and power-time curve comparison during jumping between strength-matched male and female basketball players. Eur. J. Sport Sci. 2016, 1391, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Batterham, A.M.; Hopkins, W.G. Making meaningful inferences about magnitudes. Int. J. Sport Physiol. Perform. 2006, 1, 50–57. [Google Scholar] [CrossRef]
- Street, C.; McMillan, S.; Board, W.; Rasmussen, M.; Heneghan, J.M. Sources of error in determining countermovement jump height with the impulse method. J. Appl. Biomech. 2001, 17, 43–54. [Google Scholar] [CrossRef]
- McMahon, J.J.; Jones, P.A.; Dos’Santos, T.; Comfort, P. Influence of dynamic strength index on countermovement jump force-, power-, velocity-, and displacement-time curves. Sports 2017, 5, 72. [Google Scholar] [CrossRef]
- Feltner, M.E.; Fraschetti, D.J.; Crisp, R.J. Upper extremity augmentation of lower extremity kinetics during countermovement vertical jumps. J. Sports Sci. 1999, 17, 449–466. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Petushek, E.J. Using the reactive strength index modified to evaluate plyometric performance. J. Strength Cond. Res. 2010, 24, 1983–1987. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; Cormie, P.; McBride, J.M.; McCaulley, G.O. Power time, force time, and velocity time curve analysis during the jump squat: Impact of load. J. Appl. Biomech. 2008, 24, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. A spreadsheet for analysis of straightforward controlled trials. Sportscience 2003, 7, 1–8. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Castagna, C.; Iellamo, F.; Impellizzeri, F.M.; Manzi, V. Validity and reliability of the 45-15 test for aerobic fitness in young soccer players. Int. J. Sport. Physiol. Perform. 2014, 9, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Schultz, A.B.; Callaghan, S.J.; Jeffriess, M.D. The effects of isokinetic knee extensor and flexor strength on dynamic stability as measured by functional reaching. Isokinet. Exerc. Sci. 2013, 21, 301–309. [Google Scholar] [CrossRef]
- Hopkins, W.G. How to interpret changes in an athletic performance test. Sportscience 2004, 8, 1–7. [Google Scholar] [CrossRef]
- Mandic, R.; Knezevic, O.M.; Mirkov, D.M.; Jaric, S. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height. J. Hum. Kinet. 2016, 52, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Balster, W.; Er Lim, C.X.; Kong, P.W. Effects of a deeper countermovement on vertical jump biomechanics after three weeks of familiarisation—Preliminary findings. Int. J. Hum. Mov. Sports Sci. 2016, 4, 51–60. [Google Scholar] [CrossRef]
- Gheller, R.G.; Dal Pupo, J.; Ache-Dias, J.; Detanico, D.; Padulo, J.; dos Santos, S.G. Effect of different knee starting angles on intersegmental coordination and performance in vertical jumps. Hum. Mov. Sci. 2015, 42, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Kirby, T.J.; McBride, J.M.; Haines, T.L.; Dayne, A.M. Relative net vertical impulse determines jumping performance. J. Appl. Biomech. 2011, 27, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Salles, A.S.; Baltzopoulos, V.; Rittweger, J. Differential effects of countermovement magnitude and volitional effort on vertical jumping. Eur. J. Appl. Physiol. 2011, 111, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Markovic, S.; Mirkov, D.M.; Nedeljkovic, A.; Jaric, S. Body size and countermovement depth confound relationship between muscle power output and jumping performance. Hum. Mov. Sci. 2014, 33, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Bobbert, M.F. Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic? J. Appl. Physiol. 2012, 112, 1975–1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, E.M.; Abt, G.; Brookes, F.B.C.; Challis, J.H.; Fowler, N.E.; Knudson, D.V.; Knuttgen, H.G.; Kraemer, W.J.; Lane, A.M.; van Mechelen, W.; et al. Misuse of “power” and other mechanical terms in sport and exercise science research. J. Strength Cond. Res. 2016, 30, 292–300. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Jones, P.A.; Suchomel, T.J.; Lake, J.; Comfort, P. Influence of Reactive Strength Index Modified on Force- and Power-Time Curves. Int. J. Sports Physiol. Perform. 2017, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Papaiakovou, G. Kinematic and kinetic differences in the execution of vertical jumps between people with good and poor ankle joint dorsiflexion. J. Sports Sci. 2013, 31, 1789–1796. [Google Scholar] [CrossRef] [PubMed]
- Brady, C.; Comyns, T.; Harrison, A.; Warrington, G. Focus of attention for diagnostic testing of the force-velocity curve. Strength Cond. J. 2017, 39, 57–70. [Google Scholar] [CrossRef]
- McMahon, J.; Rej, S.; Comfort, P. Sex Differences in Countermovement Jump Phase Characteristics. Sports 2017, 5, 8. [Google Scholar] [CrossRef]
Jump Variables | Unimodal (n = 16) | Bimodal (n = 17) | ES (±90% CI) |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Phases | |||
Unweighting Phase (ms) | 296 ± 22 | 320 ± 29 | 0.86, ±0.54 *** ↑ |
Braking Phase (ms) | 146 ± 27 | 157 ± 15 | 0.56, ±0.59 ** ↑ |
Propulsion Phase (ms) | 244 ± 28 | 279 ± 23 | 1.16, ±0.50 **** ↑ |
Forces | |||
Propulsion Peak Force (N·kg−1) | 26.7 ± 2.2 | 25.2 ± 1.6 | −0.74, ±0.56 ** ↓ |
Propulsion Mean Force (N·kg−1) | 20.7 ± 1.7 | 19.5 ± 1.2 | −0.79, ±0.56 *** ↓ |
Unweighting Minimum Force (N·kg−1) | 1.8 ± 1.2 | 1.0 ± 0.7 | −0.69, ±0.57 ** ↓ |
Braking End Force (N·kg−1) | 25.9 ± 2.3 | 25.1 ± 1.6 | −0.41, ±0.59 * ↓ |
Velocities | |||
Braking Minimum Velocity (m·s−1) | 1.39 ± 0.22 | 1.58 ± 0.13 | 0.95, ±0.55 *** ↑ |
Propulsion Peak Velocity (m·s−1) | 2.79 ± 0.19 | 2.85 ± 0.18 | 0.32, ±0.59 |
Displacements | |||
Braking COM Displacement (%LL) | 34.4 ± 4.6 | 40.9 ± 4.7 | 1.13, ±0.50 **** ↑ |
Jump Height (cm) | 34.5 ± 5.7 | 36.0 ± 5.2 | 0.28, ±0.59 |
Composite Variables | |||
RSImod (cm·s−1) | 50.7 ± 9.4 | 48.0 ± 8.0 | −0.30, ±0.59 |
Negative to Positive Impulse (%) | 37.8 ± 3.9 | 40.2 ± 1.7 | 0.74, ±0.58 ** ↑ |
Jump Variables | Low (n = 18) | High (n = 15) | ES (±90% CI) |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Phases | |||
Unweighting Phase (ms) | 302 ± 30 | 315 ± 25 | 0.49, ±0.57 ** ↑ |
Braking Phase (ms) | 147 ± 19 | 157 ± 25 | 0.40, ±0.60 * ↑ |
Propulsion Phase (ms) | 262 ± 33 | 262 ± 28 | 0.03, ±0.59 |
Forces | |||
Propulsion Peak Force (N·kg−1) | 25.7 ± 2.3 | 26.2 ± 1.8 | 0.24, ±0.59 |
Propulsion Mean Force (N·kg−1) | 19.5 ± 1.5 | 20.7 ± 1.4 | 0.80, ±0.54 *** ↑ |
Unweighting Minimum Force (N·kg−1) | 1.4 ± 0.8 | 1.4 ± 1.3 | −0.27, ±0.62 |
Braking End Force (N·kg−1) | 25.2 ± 2.0 | 25.8 ± 2.0 | 0.30, ±0.60 |
Velocities | |||
Braking Minimum Velocity (m·s−1) | 1.45 ± 0.20 | 1.54 ± 0.20 | 0.45, ±0.59 ** ↑ |
Propulsion Peak Velocity (m·s−1) | 2.68 ± 0.12 | 2.99 ± 0.09 | 1.62, ±0.34 ****↑ |
Displacements | |||
Braking COM Displacement (%LL) | 35.7 ± 5.9 | 40.2 ± 4.2 | 0.82, ±0.53 *** ↑ |
Jump Height (cm) | 31.2 ± 3.2 | 40.2 ± 2.9 | 1.62, ±0.34 **** ↑ |
Composite Variables | |||
RSImod (cm·s−1) | 44.4 ± 6.8 | 55.2 ± 7.0 | 1.22, ±0.49 **** ↑ |
Negative to Positive Impulse (%) | 40.0 ± 2.9 | 37.9 ± 3.1 | −0.62, ±0.58 ** ↓ |
Jump Variables | Bimodal Low (n = 8) | Bimodal High (n = 9) | ES (±90% CI) |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Phases | |||
Unweighting Phase (ms) | 319 ± 34 | 320 ± 27 | 0.07, ±0.89 |
Braking Phase (ms) | 156 ± 16 | 157 ± 16 | 0.07, ±0.88 |
Propulsion Phase (ms) | 284 ± 25 | 276 ± 21 | −0.34, ±0.88 |
Forces | |||
Propulsion Peak Force (N·kg−1) | 24.6 ± 1.6 | 25.7 ± 1.6 | 0.66, ±0.83 ** ↑ |
Propulsion Mean Force (N·kg−1) | 18.7 ± 1.1 | 20.1 ± 0.8 | 1.22, ±0.73 *** ↑ |
Unweighting Minimum Force (N·kg−1) | 1.1 ± 0.8 | 0.9 ± 0.5 | −0.19, ±0.88 |
Braking End Force (N·kg−1) | 24.5 ± 1.5 | 25.6 ± 1.6 | 0.67, ±0.83 ** ↑ |
Velocities | |||
Braking Minimum Velocity (m·s−1) | 1.53 ± 0.15 | 1.63 ± 0.09 | 0.81, ±0.85 ** ↑ |
Propulsion Peak Velocity (m·s−1) | 2.69 ± 0.15 | 2.99 ± 0.06 | 1.56, ±0.66 **** ↑ |
Displacements | |||
Braking COM Displacement (%LL) | 39.3 ± 5.4 | 42.3 ± 3.6 | 0.67, ±0.86 ** ↑ |
Jump Height (cm) | 31.4 ± 3.8 | 40.1 ± 1.7 | 1.59, ±0.65 **** ↑ |
Composite Variables | |||
RSImod (cm·s−1) | 41.8 ± 6.6 | 53.5 ± 4.4 | 1.37, ±0.72 *** ↑ |
Negative to Positive Impulse (%) | 41.2 ± 1.7 | 39.3 ± 1.2 | −1.13, ±0.75 *** ↓ |
Jump Variables | Unimodal Low (n = 10) | Unimodal High (n = 6) | ES (±90% CI) |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Phases | |||
Unweighting Phase (ms) | 289 ± 18 | 308 ± 24 | 0.86, ±0.89 ** ↑ |
Braking Phase (ms) | 141 ± 19 | 156 ± 37 | 0.07, ±0.88 |
Propulsion Phase (ms) | 245 ± 30 | 243 ± 28 | −0.34, ±0.88 |
Forces | |||
Propulsion Peak Force (N·kg−1) | 26.6 ± 2.4 | 26.9 ± 2.0 | 0.15, ±0.91 |
Propulsion Mean Force (N·kg−1) | 20.2 ± 1.5 | 21.7 ± 1.7 | 0.87, ±0.88 ** ↑ |
Unweighting Minimum Force (N·kg−1) | 1.6 ± 0.8 | 2.0 ± 1.8 | −0.17, ±1.18 |
Braking End Force (N·kg−1) | 25.8 ± 2.3 | 26.2 ± 2.6 | 0.14, ±1.00 |
Velocities | |||
Braking Minimum Velocity (m·s−1) | 1.38 ± 0.21 | 1.41 ± 0.25 | 0.11, ±1.00 |
Propulsion Peak Velocity (m·s−1) | 2.67 ± 0.10 | 2.99 ± 0.13 | 1.65, ±0.62 **** ↑ |
Displacements | |||
Braking COM Displacement (%LL) | 32.9 ± 4.7 | 37.1 ± 3.2 | 0.91, ±0.73 ** ↑ |
Jump Height (cm) | 31.0 ± 2.8 | 40.4 ± 4.3 | 1.63, ±0.65 **** ↑ |
Composite Variables | |||
RSImod (cm·s−1) | 46.5 ± 6.5 | 57.9 ± 9.6 | 1.20, ±0.82 *** ↑ |
Negative to Positive Impulse (%) | 39.0 ± 3.4 | 35.9 ± 4.2 | −0.78, ±0.98 ** ↓ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kennedy, R.A.; Drake, D. Is a Bimodal Force-Time Curve Related to Countermovement Jump Performance? Sports 2018, 6, 36. https://doi.org/10.3390/sports6020036
Kennedy RA, Drake D. Is a Bimodal Force-Time Curve Related to Countermovement Jump Performance? Sports. 2018; 6(2):36. https://doi.org/10.3390/sports6020036
Chicago/Turabian StyleKennedy, Rodney A., and David Drake. 2018. "Is a Bimodal Force-Time Curve Related to Countermovement Jump Performance?" Sports 6, no. 2: 36. https://doi.org/10.3390/sports6020036
APA StyleKennedy, R. A., & Drake, D. (2018). Is a Bimodal Force-Time Curve Related to Countermovement Jump Performance? Sports, 6(2), 36. https://doi.org/10.3390/sports6020036