Four Weeks of Off-Season Training Improves Peak Oxygen Consumption in Female Field Hockey Players
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Procedures
2.3. Running Economy
2.4. Peak Oxygen Uptake
2.5. Training Protocol
2.6. Statistical Analyses
3. Results
3.1. Running Economy
3.2. Peak Oxygen Consumption
4. Discussion
Practical Applications
5. Conclusions
Author Contributions
Conflicts of Interest
References
- National Collegiate Athletic Association. NCAA Division III Manual; National Collegiate Athletic Association: Indianapolis, IN, USA, 2015. [Google Scholar]
- Astorino, T.; Tam, P.; Rietschel, J.; Johnson, S.; Freedman, T. Changes in physical fitness parameters during a competitive field hockey season. J. Strength Cond. Res. 2004, 18, 138–142. [Google Scholar]
- Gillen, J.B.; Percival, M.E.; Skelly, L.E.; Martin, B.J.; Tan, R.B.; Tarnopolsky, M.A.; Gibala, M.J. Three minutes of all-out intermittent exercise per week increases skeletal muscle oxidative capacity and improves cardiometabolic health. PLoS ONE 2014, 9, e111489. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.; Carter, H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000, 29, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Tjønna, A.E.; Leinan, I.M.; Bartnes, A.T.; Jenssen, B.M.; Gibala, M.J.; Winett, R.A.; Wisløff, U. Low- and high-volume of intensive endurance training significantly improves maximal oxygen uptake after 10-weeks of training in healthy men. PLoS ONE 2013, 8, e65382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.S.; Warburton, D.E.; Janssen, I.; Paterson, D.H.; Latimer, A.E.; Rhodes, R.E.; Kho, M.E.; Hicks, A.; Leblanc, A.G.; Zehr, L.; et al. New Canadian physical activity guidelines. Appl. Physiol. Nutr. Metab. 2011, 36, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Lanzi, S.; Codecasa, F.; Cornacchia, M.; Maestrini, S.; Capodaglio, P.; Brunani, A.; Fanari, P.; Salvadori, A.; Malatesta, D. Short-term HIIT and Fatmax training increase aerobic and metabolic fitness in men with class II and III obesity. Obesity 2015, 23, 1987–1994. [Google Scholar] [CrossRef] [PubMed]
- Whyte, L.J.; Gill, J.M.; Cathcart, A.J. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism 2010, 59, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.; Allen, R.; Roberson, D.; Jurancich, M. Effect of high-intensity interval training on cardiovascular function, O2max, and muscle force. J. Strength Cond. Res. 2015, 26, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Esfarjani, F.; Laursen, P.B. Manipulating high-intensity interval training: Effects on O2max, the lactate threshold and 3000 m running performance in moderately trained males. J. Sci. Med. Sport 2007, 10, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Hazell, T.J.; Olver, T.D.; Hamilton, C.D.; Lemon, P.W. Two minutes of sprint-interval exercise elicits 24-h oxygen consumption similar to that of 30 min of continuous endurance exercise. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.G.; Heigenhauser, G.J.; Bonen, A.; Spriet, L. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl. Physiol. Nutr. Metab. 2008, 33, 1112–1123. [Google Scholar] [CrossRef] [PubMed]
- Roxburgh, B.H.; Nolan, P.B.; Weatherwax, R.M.; Dalleck, L.C. Is moderate intensity exercise training combined with high intensity interval training more effective at improving cardiorespiratory fitness than moderate intensity exercise training alone? J. Sports Sci. Med. 2014, 13, 702–707. [Google Scholar] [PubMed]
- Tong, T.K.; Chung, P.K.; Leung, R.W.; Nie, J.; Lin, H.; Zheng, J. Effects of non-Wingate-based high-intensity interval training on cardiorespiratory fitness and aerobic-based exercise capacity in sedentary subjects: A preliminary study. J. Exerc. Sci. Fit. 2011, 9, 75–81. [Google Scholar] [CrossRef]
- Coakley, S.L.; Passfield, L. Individualized training at different intensities, in untrained participants, results in similar physiological and performance benefits. J. Sports Sci. 2017, 1–8. [Google Scholar] [CrossRef]
- Kohn, T.A.; Essen-Gustavsson, B.; Myburgh, K.H. Specific muscle adaptations in type II fibers after high-intensity interval training of well-trained runners. Scand. J. Med. Sci. Sports 2011, 21, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Pescatello, L.S.; Arena, R.; Riebe, D.; Thompson, P.D. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2014. [Google Scholar]
- Dehghan, M.; Merchant, A. Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr. J. 2008, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Henritze, J.; Weltman, A.; Schurrer, R.L.; Barlow, K. Effects of training at and above the lactate threshold on the lactate threshold and maximal oxygen uptake. Eur. J. Appl. Physiol. Occup. Physiol. 1985, 54, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Tanner, R.; Gore, C. Incremental Treadmill Test of Middle- and Long-Distance Runners. Physiological Tests for Elite Athletes; Human Kinetics: Champaign, IL, USA, 2013; pp. 401–404. [Google Scholar]
- Erley, D.; Sborn, R.; Ukovich, M. The effects of incline and level-grade high-intensity interval treadmill training on running economy and muscle power in well-trained distance runners. J. Strength Cond. Res. 2014, 28, 1298–1309. [Google Scholar]
- Howley, E.; Bassett, D.; Welch, H. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sports Exerc. 1995, 27, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Tabata, I.; Nishimura, K.; Kouzaki, M.; Hirai, Y.; Ogita, F.; Miyachi, M.; Yamamoto, K. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and O2max. Med. Sci. Sports Exerc. 1996, 28, 1327–1330. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.G.; Aoki, M.S.; Evangelista, A.L.; Alveno, D.A.; Monteiro, G.A.; Piçarro Ida, C.; Ugrinowitsch, C. Nonlinear periodization maximizes strength gains in split resistance training routines. J. Strength Cond. Res. 2009, 23, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.D.; Dodd, D.; Alvar, B.; Rhea, M.; Favre, M. Undulation training for development of hierarchical fitness and improved firefighter job performance. J. Strength Cond. Res. 2008, 22, 1683–1695. [Google Scholar] [CrossRef] [PubMed]
- Prestes, J.; Frollini, A.B.; de Lima, C.; Donatto, F.F.; Foschini, D.; de Cássia Marqueti, R.; Figueira, A., Jr.; Fleck, S.J. Comparison between linear and daily undulating periodized resistance training to increase strength. J. Strength Cond. Res. 2009, 23, 2437–2442. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.G.; Triplett, T.N. Essentials of Strength Training and Conditioning, 4th ed.; Human Kinetics: Champaign, IL, USA, 2016. [Google Scholar]
- Laurent, C.; Vervaeke, L.; Kutz, M.; Green, J.M. Sex-specific responses to self-paced, high intensity interval training with variable recovery periods. J. Strength Cond. Res. 2014, 28, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Breil, F.; Weber, S.; Koller, S.; Hoppeler, H.; Vogt, M. Block training periodization in alpine skiing: Effects of 11-day HIIT on O2max and performance. Eur. J. Appl. Physiol. 2010, 109, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Saunders, P.U.; Telford, R.D.; Pyne, D.B.; Peltola, E.M.; Cunningham, R.B.; Gore, C.J.; Hawley, J.A. Short-term plyometric training improves running economy in highly trained middle and long distance runners. J. Strength Cond. Res. 2006, 20, 947–954. [Google Scholar] [PubMed]
- Taipale, R.S.; Mikkola, J.; Nummela, A.; Vesterinen, V.; Capostagno, B.; Walker, S.; Gitonga, D.; Kraemer, W.J.; Häkkinen, K. Strength training in endurance runners. Int. J. Sports Med. 2010, 31, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Ronnestad, B.R.; Mujika, I. Optimizing strength training for running and cycling endurance performance: A review. Scand. J. Med. Sci. Sports 2014, 24, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Little, J.P.; Safdar, A.; Bishop, D.; Tarnopolsky, M.; Gibala, M. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. Am. J. Physiol. 2011, 300, R1303–R1310. [Google Scholar]
- Little, J.P.; Safdar, A.; Wilkin, G.; Tarnopolsky, M.; Gibala, M. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: Potential mechanisms. Am. J. Physiol. 2010, 588, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Skelly, L.; Andrews, P.; Gillen, J.; Martin, B.; Percival, M.; Gibala, M. High-intensity interval exercise induces 24-h energy expenditure similar to traditional endurance exercise despite reduced time commitment. Appl. Physiol. Nutr. Metab. 2014, 39, 845–848. [Google Scholar] [CrossRef] [PubMed]
Run Economy Test | ||
---|---|---|
Time (min:s) | Speed | Grade |
0:00–2:59 | 2.906 m·s−1 | 0.0% |
3:00–3:59 | Rest | - |
4:00–6:59 | 3.129 m·s−1 | 0.0% |
7:00–7:59 | Rest | - |
8:00–10:59 | 3.353 m·s−1 | 0.0% |
11:00–14:59 | Rest | - |
Resistance Training | Day | Lifts |
---|---|---|
Main Lift | Day 1 | Squat, squat isometric hold to jump, medicine ball side toss |
Day 2 | Bench press, squat press, medicine ball throw-down | |
Day 3 | Deadlift, kettlebell swing, hurdle hop | |
Rest Periods | 1–3 min depending on focus (power 1–2 min, strength 2–3 min) | |
Accessory Training | Day 1 | Circuit 1: Pendlay row, partner bench holds Circuit 2: Trap bar deadlift, monster walks Circuit 3: Pause thruster, pull up, cable rotations |
Day 2 | Circuit 1: Dumbbell press, face pulls, landmine row Circuit 2: Dumbbell isometric hold, med ball shot put Circuit 3: Pause thruster, pull up, cable rotations | |
Day 3 | Circuit 1: Goblet squat, barbell isometric hold Circuit 2: Single leg landmine Romanian deadlift, glute bridge Circuit 3: Stiff leg pull through, sled back pedal | |
Rest Periods | One minute between exercises |
Anthropometric Measurements | HIIT (N = 8) | HITrun (N = 6) |
---|---|---|
Age (y) | 19.25 ± 0.89 | 19.33 ± 1.03 |
Height (m) | 1.63 ± 0.07 | 1.61 ± 0.13 |
Body Mass (kg) | 62.27 ± 4.83 | 64.35 ± 6.23 |
BMI (kg/m2) | 23.41 ±1.40 | 25.65 ± 7.15 |
Body Fat (%) | 21.2 ± 2.41 | 21.9 ± 4.74 |
Lean Body Mass (kg) | 49.06 ± 4.00 | 50.01 ± 2.11 |
O2peak (mL·kg−1·min−1) | 44.64 ± 3.74 | 45.39 ± 2.80 |
Treadmill Test Type | HIIT (N = 8) | HITrun (N = 6) | ||
---|---|---|---|---|
Pre | Post | Pre | Post | |
Running Economy Test | ||||
Speed 1 | 211.2 ± 14.9 | 212.3 ± 10.1 | 209.7 ± 13.6 | 214.9 ± 25.4 |
(2.906 m·s−1) | ||||
Speed 2 | 214.1 ± 16.4 | 212.2 ± 10.5 | 213.8 ± 18.1 | 216.6 ± 21.2 |
(3.129 m·s−1) | ||||
Speed 3 | 209.6 ± 15.1 | 211.4 ± 11.4 | 208.7 ± 16.8 | 211.2 ± 17.9 |
(3.353 m·s−1) | ||||
O2peak Test | ||||
O2peak | 44.64 ± 3.74 | 47.35 ± 3.16 * | 45.39 ± 2.80 | 48.22 ± 2.42 * |
Peak RER | 1.10 ± 0.05 | 1.15 ± 0.07 | 1.12 ± 0.04 | 1.12 ± 0.06 |
Training Intensity | HIIT (N = 8) | HITrun (N = 6) | ||
---|---|---|---|---|
Max HR | Average HR | Max HR | Average HR | |
Absolute Training Intensity (bpm) | 174.23 ± 4.96 | 163.21 ± 6.10 * | 173.27 ± 3.51 | 158.90 ± 4.30 |
Relative Training Intensity (%) | 86.79 | 81.30 | 86.35 | 79.18 |
Training Type | Week 1 | Week 2 | Week 3 | Week 4 | Total |
---|---|---|---|---|---|
HIIT | 30 | 30 | 30 | 30 | 120 |
HITrun | 90 | 90 | 90 | 90 | 360 |
Strength Training | |||||
HIIT | 180 | 180 | 180 | 180 | 720 |
HITrun | 180 | 180 | 180 | 180 | 720 |
Team Practice | |||||
HIIT | 0 | 0 | 300 | 300 | 300 |
HITrun | 0 | 0 | 300 | 300 | 300 |
Competition | |||||
HIIT | 0 | 0 | 150 | 0 | 150 |
HITrun | 0 | 0 | 150 | 0 | 150 |
Weekly Total | |||||
HIIT | 210 | 210 | 660 | 510 | 1590 |
HITrun | 270 | 270 | 720 | 570 | 1830 |
Weekly Aerobic Total | |||||
HIIT | 30 | 30 | 480 | 330 | 870 |
HITrun | 90 | 90 | 540 | 390 | 1110 |
Weekly Aerobic Training Volume | |||||
HIIT | 330 | 322 | 392 | 320 | 1364 |
HITrun | 1045 | 1013 | 991 | 991 | 4040 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Funch, L.T.; Lind, E.; True, L.; Van Langen, D.; Foley, J.T.; Hokanson, J.F. Four Weeks of Off-Season Training Improves Peak Oxygen Consumption in Female Field Hockey Players. Sports 2017, 5, 89. https://doi.org/10.3390/sports5040089
Funch LT, Lind E, True L, Van Langen D, Foley JT, Hokanson JF. Four Weeks of Off-Season Training Improves Peak Oxygen Consumption in Female Field Hockey Players. Sports. 2017; 5(4):89. https://doi.org/10.3390/sports5040089
Chicago/Turabian StyleFunch, Lindsey T., Erik Lind, Larissa True, Deborah Van Langen, John T. Foley, and James F. Hokanson. 2017. "Four Weeks of Off-Season Training Improves Peak Oxygen Consumption in Female Field Hockey Players" Sports 5, no. 4: 89. https://doi.org/10.3390/sports5040089
APA StyleFunch, L. T., Lind, E., True, L., Van Langen, D., Foley, J. T., & Hokanson, J. F. (2017). Four Weeks of Off-Season Training Improves Peak Oxygen Consumption in Female Field Hockey Players. Sports, 5(4), 89. https://doi.org/10.3390/sports5040089