An Investigation of the Mechanics and Sticking Region of a One-Repetition Maximum Close-Grip Bench Press versus the Traditional Bench Press
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.3. 1RM TBP and CGBP Strength Testing
- PrSR: time from lowest barbell point until maximal barbell velocity.
- SR: time from maximal barbell velocity until first local minimum barbell velocity.
- PoSR: time from the instant vertical acceleration of the barbell became positive again until the completion of the lift.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
TBP | Traditional bench press |
BAD | Biacromial distance |
CGBP | Close-grip bench press |
SR | Sticking region |
m | Meters |
1RM | One-repetition maximum |
PrSR | Pre-sticking region |
PoSR | Post-sticking region |
kg | Kilograms |
ANOVA | Analysis of variance |
BM | Body mass |
s | Seconds |
w | Watts |
m·s−1 | Meters per second |
N | Newtons |
J | Joules |
CV | Coefficient of variation |
SD | Standard deviation |
CI | Confidence intervals |
p | Significance |
d | Effect size |
PP | Peak power |
MP | Mean power |
PV | Peak velocity |
MV | Mean velocity |
References
- Gomo, O.; Van Den Tillaar, R. The effects of grip width on sticking region in bench press. J. Sports Sci. 2016, 34, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Algra, B. A in-depth analysis of the bench press. Natl. Strength Coach. Assoc. J. 1982, 4, 6–13. [Google Scholar] [CrossRef]
- Lehman, G.J. The influence of grip width and forearm pronation/supination on upper-body myoelectric activity during the flat bench press. J. Strength Cond. Res. 2005, 19, 587–591. [Google Scholar] [PubMed]
- van den Tillaar, R.; Saeterbakken, A. The sticking region in three chest-press exercises with increasing degrees of freedom. J. Strength Cond. Res. 2012, 26, 2962–2969. [Google Scholar] [CrossRef] [PubMed]
- Clemons, J.M.; Aaron, C. Effect of grip width on the myoelectric activity of the prime movers in the bench press. J. Strength Cond. Res. 1997, 11, 82–87. [Google Scholar] [CrossRef]
- Wagner, L.L.; Evans, S.A.; Weir, J.P.; Housh, T.J.; Johnson, G.O. The effect of grip width on bench press performance. Int. J. Sport Biomech. 1992, 8, 1–10. [Google Scholar] [CrossRef]
- Fees, M.; Decker, T.; Snyder-Mackler, L.; Axe, M.J. Upper extremity weight-training modifications for the injured athlete. A clinical perspective. Am. J. Sports Med. 1998, 26, 732–742. [Google Scholar] [PubMed]
- Haupt, H.A. Upper extremity injuries associated with strength training. Clin. Sports Med. 2001, 20, 481–490. [Google Scholar] [CrossRef]
- Green, C.M.; Comfort, P. The affect of grip width on bench press performance and risk of injury. Strength Cond. J. 2007, 29, 10–14. [Google Scholar] [CrossRef]
- Gross, M.L.; Brenner, S.L.; Esformes, I.; Sonzogni, J.J. Anterior shoulder instability in weight lifters. Am. J. Sports Med. 1993, 21, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Barnett, C.; Kippers, V.; Turner, P. Effects of variations of the bench press exercise on the EMG activity of five shoulder muscles. J. Strength Cond. Res. 1995, 9, 222–227. [Google Scholar] [CrossRef]
- Wheeler, K.; Sayers, M. Contact skills predicting tackle-breaks in rugby union. Int. J. Sports Sci. Coach. 2009, 4, 535–544. [Google Scholar] [CrossRef]
- Wheeler, K.W.; Sayers, M.G.L. Rugby union contact skills alter evasive agility performance during attacking ball carries. Int. J. Sports Sci. Coach. 2011, 6, 419–432. [Google Scholar] [CrossRef]
- Stokes, J.V.; Luiselli, J.K.; Reed, D.D.; Fleming, R.K. Behavioral coaching to improve offensive line pass-blocking skills of high school football athletes. J. Appl. Behav. Anal. 2010, 43, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.B.; Owen, G.J. Upper-body strength and power assessment in women using a chest pass. J. Strength Cond. Res. 2004, 18, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Delextrat, A.; Cohen, D. Strength, power, speed, and agility of women basketball players according to playing position. J. Strength Cond. Res. 2009, 23, 1974–1981. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, M.R.M.; Wilson, B.D. Biomechanical analysis of the deadlift. J. Strength Cond. Res. 1996, 10, 250–255. [Google Scholar] [CrossRef]
- Elliott, B.C.; Wilson, G.J.; Kerr, G.K. A biomechanical analysis of the sticking region in the bench press. Med. Sci. Sports Exerc. 1989, 21, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Van den Tillaar, R.; Ettema, G. The “sticking period” in a maximum bench press. J. Sports Sci. 2010, 28, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Kompf, J.; Arandjelovic, O. Understanding and overcoming the sticking point in resistance exercise. Sports Med. 2016, 46, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Ball, N.; Nolan, E.; Wheeler, K. Anthropometrical, physiological, and tracked power profiles of elite taekwondo athletes 9 weeks before the Olympic competition phase. J. Strength Cond. Res. 2011, 25, 2752–2763. [Google Scholar] [CrossRef] [PubMed]
- Drinkwater, E.J.; Galna, B.; McKenna, M.J.; Hunt, P.H.; Pyne, D.B. Validation of an optical encoder during free weight resistance movements and analysis of bench press sticking point power during fatigue. J. Strength Cond. Res. 2007, 21, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Harris, N.K.; Cronin, J.; Taylor, K.-L.; Boris, J.; Sheppard, J. Understanding position transducer technology for strength and conditioning practitioners. Strength Cond. J. 2010, 32, 66–79. [Google Scholar] [CrossRef]
- Buttifant, D.; Hrysomallis, C. Effect of various practical warm-up protocols on acute lower-body power. J. Strength Cond. Res. 2015, 29, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Moreno, M.R.; Lazar, A.; Risso, F.G.; Tomita, T.M.; Stage, A.A.; Birmingham-Babauta, S.A.; Torne, I.A.; Stokes, J.J.; Giuliano, D.V.; et al. The one-repetition maximum mechanics of a high-handle hexagonal bar deadlift compared to a conventional deadlift as measured by a linear position transducer. J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.J.; Stock, M.S.; Shields, J.E.; Luera, M.J.; Munayer, I.K.; Mota, J.A.; Carrillo, E.C.; Olinghouse, K.D. Barbell deadlift training increases the rate of torque development and vertical jump performance in novices. J. Strength Cond. Res. 2015, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Berning, J.M.; Coker, C.A.; Briggs, D. The biomechanical and perceptual influence of chain resistance on the performance of the olympic clean. J. Strength Cond. Res. 2008, 22, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Cholewicki, J.; McGill, S.M.; Norman, R.W. Lumbar spine loads during the lifting of extremely heavy weights. Med. Sci. Sports Exerc. 1991, 23, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. How to interpret changes in an athletic performance test. Sportscience 2004, 8, 1–7. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Schick, E.E.; Coburn, J.W.; Brown, L.E.; Judelson, D.A.; Khamoui, A.V.; Tran, T.T.; Uribe, B.P. A comparison of muscle activation between a Smith machine and free weight bench press. J. Strength Cond. Res. 2010, 24, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Cotterman, M.L.; Darby, L.A.; Skelly, W.A. Comparison of muscle force production using the Smith machine and free weights for bench press and squat exercises. J. Strength Cond. Res. 2005, 19, 169–176. [Google Scholar] [PubMed]
- Ware, J.S.; Clemens, C.T.; Mayhew, J.L.; Johnston, T.J. Muscular endurance repetitions to predict bench press and squat strength in college football players. J. Strength Cond. Res. 1995, 9, 99–103. [Google Scholar] [CrossRef]
- Robbins, D.W.; Young, W.B.; Behm, D.G. The effect of an upper-body agonist-antagonist resistance training protocol on volume load and efficiency. J. Strength Cond. Res. 2010, 24, 2632–2640. [Google Scholar] [CrossRef] [PubMed]
- Stock, M.S.; Beck, T.W.; Defreitas, J.M.; Dillon, M.A. Relationships among peak power output, peak bar velocity, and mechanomyographic amplitude during the free-weight bench press exercise. J. Sports Sci. 2010, 28, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Young, K.P.; Haff, G.G.; Newton, R.U.; Gabbett, T.J.; Sheppard, J.M. Assessment and monitoring of ballistic and maximal upper-body strength qualities in athletes. Int. J. Sports Physiol. Perform. 2015, 10, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Van den Tillaar, R.; Saeterbakken, A.H. Fatigue effects upon sticking region and electromyography in a six-repetition maximum bench press. J. Sports Sci. 2013, 31, 1823–1830. [Google Scholar] [CrossRef] [PubMed]
- Billich, R.; Štvrtňa, J.; Jelen, K. Optimal velocity to achieve maximum power output—Bench press for trained footballers. AUC Kinanthropol. 2014, 50, 37–45. [Google Scholar] [CrossRef]
- Lander, J.E.; Bates, B.T.; Sawhill, J.A.; Hamill, J. A comparison between free-weight and isokinetic bench pressing. Med. Sci. Sports Exerc. 1985, 17, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Drinkwater, E.J.; Moore, N.R.; Bird, S.P. Effects of changing from full range of motion to partial range of motion on squat kinetics. J. Strength Cond. Res. 2012, 26, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Black, M. Reliability and Validity of the GymAware Optical Encoder to Measure Displacement Data. 2010. Available online: http://www.kinetic.com.au/pdf/GA-Report2.pdf (accessed on 3 August 2016).
- Hori, N.; Andrews, W.A. Reliability of velocity, force and power obtained from the GymAware optical encoder during countermovement jump with and without external loads. J. Aust. Strength Cond. 2009, 17, 12–17. [Google Scholar]
- Bradshaw, E.J.; Maulder, P.S.; Keogh, J.W. Biological movement variability during the sprint start: Performance enhancement or hindrance? Sports Biomech. 2007, 6, 246–260. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Murphy, A.J.; Knight, T.J.; Janse de Jonge, X.A.K. Factors that differentiate acceleration ability in field sport athletes. J. Strength Cond. Res. 2011, 25, 2704–2714. [Google Scholar] [CrossRef] [PubMed]
- Lien, D.; Balakrishnan, N. On regression analysis with data cleaning via trimming, winsorization, and dichotomization. Commun. Stat. Simul. Comput. 2005, 34, 839–849. [Google Scholar] [CrossRef]
- Jeffriess, M.D.; Schultz, A.B.; McGann, T.S.; Callaghan, S.J.; Lockie, R.G. Effects of preventative ankle taping on planned change-of-direction and reactive agility performance and ankle muscle activity in basketballers. J. Sports Sci. Med. 2015, 14, 864–876. [Google Scholar] [PubMed]
- Callaghan, S.J.; Lockie, R.G.; Jeffriess, M.D. The acceleration kinematics of cricket-specific starts when completing a quick single. Sports Tech. 2014, 7, 39–51. [Google Scholar] [CrossRef]
- Feise, R.J. Do multiple outcome measures require p-value adjustment? BMC Med. Res. Methodol. 2002, 2. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Earlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Cronin, J.B.; McNair, P.J.; Marshall, R.N. The role of maximal strength and load on initial power production. Med. Sci. Sports Exerc. 2000, 32, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Lindle, R.S.; Metter, E.J.; Lynch, N.A.; Fleg, J.L.; Fozard, J.L.; Tobin, J.; Roy, T.A.; Hurley, B.F. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 year. J. Appl. Physiol. 1997, 83, 1581–1587. [Google Scholar] [PubMed]
- Miller, A.E.J.; MacDougall, J.D.; Tarnopolsky, M.A.; Sale, D.G. Gender differences in strength and muscle fiber characteristics. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 66, 254–262. [Google Scholar] [CrossRef] [PubMed]
Variable | TBP | CGBP | p Value | d | d Strength |
---|---|---|---|---|---|
Grip Width (m) | 0.60 ± 0.11 | 0.34 ± 0.04 * | <0.001 | 3.14 | Very Large |
(0.56–0.65) | (0.32–0.35) | (2.31–3.89) | |||
1RM Load (kg) | 87.35 ± 27.23 | 83.03 ± 24.67 * | <0.001 | 0.17 | Trivial |
(75.12–96.93) | (73.07–93.00) | (−0.37–0.70) | |||
Relative Strength (kg·BM−1) | 1.12 ± 0.27 | 1.06 ± 0.24 * | <0.001 | 0.23 | Small |
(1.00–1.21) | (0.97–1.16) | (−0.30–0.77) | |||
Lift Distance (m) | 0.41 ± 0.04 | 0.43 ± 0.05 | 0.018 | 0.44 | Small |
(0.40–0.43) | (0.41–0.45) | (−0.10–0.98) | |||
Lift Duration (s) | 3.47 ± 1.43 | 2.98 ± 1.03 | 0.044 | 0.39 | Small |
(2.91–4.02) | (2.56–3.39) | (−0.15–0.93) |
Variable | TBP | CGBP | p Value | d | d Strength |
---|---|---|---|---|---|
PP (w) | 313.18 ± 105.94 | 376.48 ± 149.66 * | 0.001 | 0.49 | Small |
(265.26–350.36) | (316.03–436.93) | (−0.06–1.02) | |||
PP Distance (m) | 0.024 ± 0.010 | 0.035 ± 0.016 * | 0.006 | 0.82 | Moderate |
(0.021–0.029) | (0.028–0.041) | (0.26–1.37) | |||
PP Distance (%) | 6.28 ± 3.02 | 8.15 ± 3.99 | 0.068 | 0.53 | Small |
(5.22–7.66) | (6.53–9.76) | (−0.02–1.06) | |||
Time at PP (s) | 0.17 ± 0.06 | 0.17 ± 0.05 | 0.784 | <0.01 | Trivial |
(0.15–0.20) | (0.15–0.20) | (−0.53–0.53) | |||
Time at PP (%) | 6.16 ± 3.90 | 6.74 ± 3.34 | 0.412 | 0.16 | Trivial |
(4.69–7.72) | (5.40–8.09) | (−0.38–0.69) | |||
MP (w) | 168.71 ± 70.33 | 190.81 ± 87.82 | 0.088 | 0.28 | Small |
(136.96–193.41) | (155.34–226.28) | (−0.26–0.81) | |||
PV (m·s−1) | 0.35 ± 0.06 | 0.43 ± 0.07 * | <0.001 | 1.23 | Large |
(0.32–0.37) | (0.40–0.46) | (0.63–1.79) | |||
MV (m·s−1) | 0.20 ± 0.06 | 0.23 ± 0.07 | 0.023 | 0.46 | Small |
(0.17–0.22) | (0.20–0.26) | (−0.09–0.99) | |||
Peak Force (N) | 1124.24 ± 378.37 | 1107.39 ± 394.63 | 0.579 | 0.04 | Trivial |
(949.75–1256.10) | (948.00–1266.79) | (−0.49–0.58) | |||
Mean Force (N) | 861.74 ± 269.48 | 820.03 ± 240.36 * | <0.001 | 0.16 | Trivial |
(740.72–956.59) | (722.95–917.12) | (−0.37–0.70) | |||
Work (J) | 265.64 ± 150.31 | 239.87 ± 128.94 | 0.288 | 0.18 | Trivial |
(204.93–326.36) | (188.86–290.88) | (−0.35–0.72) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lockie, R.G.; Callaghan, S.J.; Moreno, M.R.; Risso, F.G.; Liu, T.M.; Stage, A.A.; Birmingham-Babauta, S.A.; Stokes, J.J.; Giuliano, D.V.; Lazar, A.; et al. An Investigation of the Mechanics and Sticking Region of a One-Repetition Maximum Close-Grip Bench Press versus the Traditional Bench Press. Sports 2017, 5, 46. https://doi.org/10.3390/sports5030046
Lockie RG, Callaghan SJ, Moreno MR, Risso FG, Liu TM, Stage AA, Birmingham-Babauta SA, Stokes JJ, Giuliano DV, Lazar A, et al. An Investigation of the Mechanics and Sticking Region of a One-Repetition Maximum Close-Grip Bench Press versus the Traditional Bench Press. Sports. 2017; 5(3):46. https://doi.org/10.3390/sports5030046
Chicago/Turabian StyleLockie, Robert G., Samuel J. Callaghan, Matthew R. Moreno, Fabrice G. Risso, Tricia M. Liu, Alyssa A. Stage, Samantha A. Birmingham-Babauta, John J. Stokes, Dominic V. Giuliano, Adrina Lazar, and et al. 2017. "An Investigation of the Mechanics and Sticking Region of a One-Repetition Maximum Close-Grip Bench Press versus the Traditional Bench Press" Sports 5, no. 3: 46. https://doi.org/10.3390/sports5030046
APA StyleLockie, R. G., Callaghan, S. J., Moreno, M. R., Risso, F. G., Liu, T. M., Stage, A. A., Birmingham-Babauta, S. A., Stokes, J. J., Giuliano, D. V., Lazar, A., Davis, D. L., & Orjalo, A. J. (2017). An Investigation of the Mechanics and Sticking Region of a One-Repetition Maximum Close-Grip Bench Press versus the Traditional Bench Press. Sports, 5(3), 46. https://doi.org/10.3390/sports5030046