A Comparison of Implicit and Explicit Motor Sequence Learning in Patients with Relapsing-Remitting Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Mini Mental State Examination (MMSE)
2.2. Wechsler Adult Intelligence Scale
2.3. Subsection
Serial Reaction Time Task (SRTT)
3. Results
3.1. Explicit Learning in MS Patients
3.1.1. Reduced error
3.1.2. Reduced response time
3.2. Implicit Learning in MS Patients
3.2.1. Reduced error
3.2.2. Reduced response time
3.3. Comparison of Explicit and Implicit Motor Sequence Learning
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grossman, I.; Knappertz, V.; Laifenfeld, D.; Ross, C.; Zeskind, B.; Kolitz, S.; Ladkani, D.; Hayardeny, L.; Loupe, P.; Laufer, R.; et al. Pharmacogenomics strategies to optimize treatments for multiple sclerosis: Insights from clinical research. Prog. Neurobiol. 2017, 152, 114–130. [Google Scholar] [CrossRef] [PubMed]
- Gamble, K.R.; Cummings, T.J.; Lo, S.E.; Ghosh, P.T.; Howard, J.H.; Howard, D.V. Implicit sequence learning in people with Parkinson’s disease. Front. Hum. Neurosci. 2014, 8, 563. [Google Scholar] [CrossRef] [PubMed]
- Robertson, E.M. The serial reaction time task: Implicit motor skill learning? J. Neurosci. 2007, 27, 10073–10075. [Google Scholar] [CrossRef] [PubMed]
- Mirzakhany-Araghi, N.; Nejati, V.; Pashazadeh-Azari, Z.; Tabatabaee, M. Comparison of implicit and explicit motor sequence learning in children with ADHD and their typical peers. J. Res. Rehabil. Sci. 2014, 4, 12–23. [Google Scholar]
- Cleeremans, A.; Destrebecqz, A.; Boyer, M. Implicit learning: News from the front. Trends Cognitive Sci. 1998, 2, 406–416. [Google Scholar] [CrossRef]
- Trapp, B.D.; Ransohoff, R.; Rudick, R. Axonal pathology in multiple sclerosis: Relationship to neurologic disability. Curr. Opin. Neurol. 1999, 12, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Sumowski, J.F.; Chiaravalloti, N.; Wylie, G.; DeLuca, J. Cognitive reserve moderates the negative effect of brain atrophy on cognitive efficiency in multiple sclerosis. J. Int. Neuropsychol. Soc. 2009, 15, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Sharrack, B.; Hughes, R.A. The Guy’s Neurological Disability Scale (GNDS): A new disability measure for multiple sclerosis. Mult. Scler. J. 1999, 5, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Brassington, J.C.; Marsh, N.V. Neuropsychological aspects of multiple sclerosis. Neuropsychol. Rev. 1998, 8, 43–77. [Google Scholar] [CrossRef] [PubMed]
- Primary Progressive MS (PPMS). Available online: http://www.nationalmssociety.org/What-is-MS/Types-of-MS/Relapsing-remitting-MS (accessed on 14 may 2017).
- Chiaravalloti, N.D.; DeLuca, J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008, 7, 1139–1151. [Google Scholar] [CrossRef]
- Mitolo, M.; Venneri, A.; Wilkinson, I.D.; Sharrack, B. Cognitive rehabilitation in multiple sclerosis: A systematic review. J. Neurol. Sci. 2015, 354, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.M.; Leo, G.J.; Bernardin, L.; Unverzagt, F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology 1991, 41, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.P.; Langdon, D.; Montalban, X.; Benedict, R.H.; DeLuca, J.; Krupp, L.B.; Comi, G. Treatment of cognitive impairment in multiple sclerosis: Position paper. J. Neurol. 2013, 260, 1452–1468. [Google Scholar] [CrossRef] [PubMed]
- Chiaravalloti, N.D.; Stojanovic-Radic, J.; DeLuca, J. The role of speed versus working memory in predicting learning new information in multiple sclerosis. J. Clin. Exp. Neuropsychol. 2013, 35, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, L.; Khan, Z.; Jahanshahi, M. The role of the basal ganglia and its cortical connections in sequence learning: Evidence from implicit and explicit sequence learning in Parkinson’s disease. Neuropsychologia 2009, 47, 2564–2573. [Google Scholar] [CrossRef] [PubMed]
- Machado-Vieira, R.; Yuan, P.; Brutsche, N.; DiazGranados, N.; Luckenbaugh, D.; Manji, H.K.; Zarate, C.A. Brain-derived neurotrophic factor and initial antidepressant response to an N-methyl-D-aspartate antagonist. J. Clin. Psych. 2009, 70, 1662–1666. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Tian, Y.; Cheng, H.; Chen, Z.; Yin, C.; Meng, Y.; Wang, K. Conceptual implicit memory impaired in amnestic mild cognitive impairment patient. Neurosci. Lett. 2010, 484, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Casadio, M.; Sanguineti, V.; Morasso, P.; Solaro, C. Abnormal sensorimotor control, but intact forcefield adaptation, in multiple sclerosis subjects with no clinical disability. Mult. Scler. J. 2008, 14, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Solaro, C.; Brichetto, G.; Casadio, M.; Roccatagliata, L.; Ruggiu, P.; Mancardi, G.L.; Sanguineti, V. Subtle upper limb impairment in asymptomatic multiple sclerosis subjects. Mult. Scler. J. 2007, 13, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Tomassini, V.; Johansen-Berg, H.; Leonardi, L.; Paixão, L.; Jbabdi, S.; Palace, J.; Matthews, P.M. Preservation of motor skill learning in patients with multiple sclerosis. Mult. Scler. J. 2011, 17, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Tacchino, A.; Bove, M.; Roccatagliata, L.; Mancardi, G.L.; Uccelli, A.; Bonzano, L. Selective impairments of motor sequence learning in multiple sclerosis patients with minimal disability. Brain Res. 2014, 1585, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.M.; Grafman, J.; DiGiulio, D.; Mittenberg, W.; Bernardin, L.; Leo, G.J.; Unverzagt, F. Memory dysfunction in multiple sclerosis: Its relation to working memory, semantic encoding, and implicit learning. Neuropsychologia 1993, 7, 364. [Google Scholar] [CrossRef]
- Rao, S.M. Cognitive impairment in multiple sclerosis. Latest Res. 2012, 103, 73–96. [Google Scholar] [CrossRef]
- Lazeron, R.H.; de Sonneville, L.M.; Scheltens, P.; Polman, C.H.; Barkhof, F. Cognitive slowing in multiple sclerosis is strongly associated with brain volume reduction. Mult. Scler. J. 2006, 12, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Solari, A.; Filippini, G.; Gasco, P.; Colla, L.; Salmaggi, A.; La Mantia, L. Physical rehabilitation has a positive effect on disability in multiple sclerosis patients. Neurology 1999, 52, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Bonzano, L.; Tacchino, A.; Roccatagliata, L.; Sormani, M.P.; Mancardi, G.L.; Bove, M. Impairment in explicit visuomotor sequence learning is related to loss of microstructural integrity of the corpus callosum in multiple sclerosis patients with minimal disability. Neuroimage 2011, 57, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Zahiri, N.; Abdollahi, I.; Nabavi, S.M.; A’rab, A.M. Explicit Motor Sequence Learning in Relapse-Remission MS Patients. J. Rehabil. 2013, 14, 70–76. [Google Scholar]
- Scarrabelotti, M.; Carroll, M. Awareness of remembering achieved through automatic and conscious processes in multiple sclerosis. Brain Cognit. 1998, 38, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Vandenbossche, J.; Deroost, N.; Soetens, E.; Kerckhofs, E. Does implicit learning in non-demented Parkinson’s disease depend on the level of cognitive functioning? Brain Cognit. 2009, 69, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Vakil, E.; Bloch, A.; Cohen, H. Anticipation measures of sequence learning: Manual versus coulometer versions of the serial reaction time task. Quart. J. Exp. Psych. 2017, 70, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Expanded Disability Status Scale (EDSS). Available online: https://www.mstrust.org.uk/a-z/expanded-disability-status-scale-edss (accessed on 14 may 2017).
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-Mental State: A practicalmethod of grading the cognitive state of patients for the clinician. J. Psychiatric Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Lezac, D.M.; Loring, W.D.; Howieson, B.D. Neuropsychological Assessment; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Tierney, M.C.; Szalai, J.P.; Snow, W.G.; Fisher, R.H.; Dunn, E. Domain specificity of the subtests of the Mini-Mental State Examination. Arch. Neurol. 1997, 54, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Sarrami, G. Standardization Wechsler Memory Scale (WMS-O) on the population living in Tehran. Master’s Thesis, Tehran Tarbiat Modarres University, Tehran, Iran, 1983. [Google Scholar]
- Baron-Cohen, S.; Hammer, J. Is autism an extreme form of the “male brain”? Adv. Infancy Res. 1997, 11, 193–218. [Google Scholar]
- Jenkins, I.H.; Brooks, D.J.; Nixon, P.D.; Frackowiak, R.S.; Passingham, R.E. Motor sequence learning: A study with positron emission tomography. J. Neurosci. 1994, 14, 3775–3790. [Google Scholar] [PubMed]
- Curran, T. On the neural mechanisms of sequence learning. Psyche 1995, 2, 20–22. [Google Scholar]
- Weir, R.P. Rehabilitation of Cerebrovascular Disorder (Stroke): Early Discharge and Support: A Critical Review of the Literature; New Zealand Health Technology Assessment (NZHTA): Christchurch, New Zealand, 1999. [Google Scholar]
- Rüsseler, J.; Kuhlicke, D.; Münte, T.F. Human error monitoring during implicit and explicit learning of a sensorimotor sequence. Neurosci. Res. 2003, 47, 233–240. [Google Scholar] [CrossRef]
- D’esposito, M.; Onishi, K.; Thompson, H.; Robinson, K.; Armstrong, C.; Grossman, M. Working memory impairments in multiple sclerosis: Evidence from a dual-task paradigm. Neuropsychologia 1996, 10, 50–51. [Google Scholar] [CrossRef]
- Deroost, N.; Smetcoren, S.; Vandenbossche, J.; D’Hooghe, M.; Kerckhofs, E. Implicit and Explicit Learning of Sequential Motor Skill in Multiple Sclerosis: Directions for Rehabilitation. J. Neurosci. Rehabilit. 2014, 1, 10–15. [Google Scholar] [CrossRef]
- Cortez, V.A.; Duriez-Sotelo, E.; Carrillo-Mora, P.; Pérez-Zuno, J.A. Correlation between demyelinating lesions and executive function decline in a sample of Mexican patients with multiple sclerosis. Neurology 2013, 28, 394–399. [Google Scholar]
- Julian, L.J. Cognitive functioning in multiple sclerosis. Neurol. Clinics 2011, 29, 507–525. [Google Scholar] [CrossRef] [PubMed]
- Iaffaldano, P.; Viterbo, R.G.; Goretti, B.; Portaccio, E.; Amato, M.P.; Trojano, M. Emotional and neutral verbal memory impairment in Multiple Sclerosis. J. Neurol. Sci. 2014, 341, 28–31. [Google Scholar] [CrossRef] [PubMed]
Variable/Group | MS Patient | Healthy Control | Test | P-Value |
---|---|---|---|---|
Gender | 15 men and 15 women | 15 men and 15 women | X2 = 0.40 | 0.309 |
Age | 49.5 (7.9) | 42.5 (7.2) | T(60) = 0.82 | 0.231 |
Wechsler Intelligence Scale | 91.34 (5.23) | 98.12 (3.87) | T(60) = 0.34 | 0.667 |
MMSE | 26.8 (1.6) | 27.5 (1.8) | T(60) = 0.43 | 0.491 |
Variable/Group | MS Patients (Implicit Learning) M(SE) | MS Patients (Explicit Learning) M(SE) | Test | P-Value |
---|---|---|---|---|
Disease duration (Years) | 4.91 (1.05) | 5.67 (2.21) | T(30) = 0.91 | 0.682 |
EDSS | 5.8 (1.12) | 5.3 (1.28) | T(30) = 0.28 | 0.781 |
Variable | Healthy Controls | MS Patients | Interactive Effect of Variable | Effect of Group | |||||
---|---|---|---|---|---|---|---|---|---|
Mean (SD) | P-Value | Mean (SD) | P-Value | P-Value | P-Value | ||||
Block 2 | Block 6 | Block 2 | Block 6 | ||||||
Explicit learning | Accuracy | 66.36 (3.731) | 67.85 (2.42) | 0.309 | 68.25 (1.42) | 68.33 (1.37) | 0.838 | 0.358 | 0.457 |
Speed | 1.82 (0.57) | 1.65 (0.53) | 0.044 | 1.56 (0.286) | 1.64 (0.384) | 0.216 | 0.017 | 0.108 | |
Implicit learning | Accuracy | 68.33 (1.61) | 68.25 (1.21) | 0.878 | 86.67 (1.23) | 69.00 (1.47) | 0.517 | 0.572 | 0.230 |
Speed | 1.703 (0.543) | 1.658 (0.454) | 0.604 | 1.79 (0.49) | 1.73 (0.48) | 0.147 | 0.882 | 0.657 |
Variable | Healthy Controls | MS Patients | Interactive effect of Variable | Effect of Group | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean (SD) | P-value | Mean (SD) | P-Value | P-Value | P-Value | ||||||||||
1 | 3 | 4 | 5 | 7 | 1 | 3 | 4 | 5 | 7 | ||||||
Explicit Learning | Accuracy | 66.92 (2.42) | 67.67 (2.42) | 67 (2.33) | 67 (2.76) | 68.67 (1.73) | 0.01 | 66.17 (3.66) | 66.25 (2.45) | 67.92 (1.83) | 68.42 (1.50) | 68.25 (2.22) | 0.09 | 0.13 | 0.845 |
Speed | 1.72 (0.57) | 1.72 (0.53) | 1.82 (0/57) | 1.56 (0.62) | 1.60 (0.5) | 0.42 | 1.61 (0.40) | 1.57 (0.31) | 1.59 (0.31) | 1.58 (0.32) | 1.58 (0.36) | 0.95 | 0.544 | 0.48 | |
Implicit learning | Accuracy | 66.92 (3.05) | 68.5 (1.38) | 68.08 (2.23) | 69.33 (0.98) | 69 (1.34) | 0.008 | 66.25 (3.81) | 67.43 (1.642) | 68.5 (1.16) | 68 (1.80) | 69 (1.47) | 0.012 | 0.369 | 0.38 |
Speed | 1.92 (0.66) | 1.63 (0.68) | 1.65 (0.63) | 1.59 (0.52) | 1.55 (0.50) | 0.05 | 2.005 (0.64) | 1.84 (0.70) | 1.67 (0.37) | 1.55 (0.56) | 1.57 (0.60) | 0.012 | 0.783 | 0.57 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarabandi, M. A Comparison of Implicit and Explicit Motor Sequence Learning in Patients with Relapsing-Remitting Multiple Sclerosis. Sports 2017, 5, 34. https://doi.org/10.3390/sports5020034
Sarabandi M. A Comparison of Implicit and Explicit Motor Sequence Learning in Patients with Relapsing-Remitting Multiple Sclerosis. Sports. 2017; 5(2):34. https://doi.org/10.3390/sports5020034
Chicago/Turabian StyleSarabandi, Maliheh. 2017. "A Comparison of Implicit and Explicit Motor Sequence Learning in Patients with Relapsing-Remitting Multiple Sclerosis" Sports 5, no. 2: 34. https://doi.org/10.3390/sports5020034
APA StyleSarabandi, M. (2017). A Comparison of Implicit and Explicit Motor Sequence Learning in Patients with Relapsing-Remitting Multiple Sclerosis. Sports, 5(2), 34. https://doi.org/10.3390/sports5020034