Modelling the Progression of Male Swimmers’ Performances through Adolescence
Abstract
:1. Introduction
2. Methods
Number of Performances (years) | 50 m Freestyle | 100 m Freestyle | 200 m Freestyle | 100 m Backstroke | 100 m Breaststroke | 100 m Butterfly | 200 m Individual Medley |
---|---|---|---|---|---|---|---|
1 | 376 | 280 | 190 | 178 | 196 | 132 | 139 |
2 | 151 | 103 | 87 | 74 | 69 | 55 | 65 |
3 | 69 | 49 | 37 | 34 | 37 | 26 | 38 |
4 | 25 | 17 | 16 | 14 | 21 | 14 | 18 |
5 | 9 | 3 | 6 | 1 | 9 | 4 | 6 |
6 | 2 | 1 | 1 | 0 | 3 | 2 | 1 |
2.1. Statisical Analysis
2.2. Evaluation of Models
3. Results
Predictor | 50 m Freestyle | 100 m Freestyle | 200 m Freestyle | 100 m Backstroke | 100 m Breaststroke | 100 m Butterfly | 200 m Individual Medley | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | P | Mean | P | Mean | P | Mean | P | Mean | P | Mean | P | Mean | P | |
Fixed Quadratic (a) | 0.21 | <0.001 | 0.48 | <0.001 | 0.93 | <0.001 | 0.47 | <0.001 | 0.50 | <0.001 | 0.41 | <0.001 | 0.97 | <0.001 |
Standard error (SE) | (0.02) | – | (0.06) | – | (0.14) | – | (0.08) | – | (0.08) | – | (0.11) | – | (0.14) | – |
95% C.I. | 0.05 | – | 0.11 | – | 0.28 | – | 0.16 | – | 0.16 | – | 0.21 | – | 0.28 | – |
Cross val. 2/3 diff. | 0.003 | <0.001 | 0.051 | <0.001 | 0.21 | <0.001 | 0.07 | <0.001 | −0.068 | <0.001 | 0.05 | 0.007 | 0.10 | <0.001 |
Cross val. 1/3 diff. | 0.03 | <0.001 | 0.010 | <0.001 | 0.003 | 0.001 | −0.05 | 0.001 | 0.097 | 0.005 | −0.13 | 0.001 | −0.22 | <0.001 |
Fixed Linear (b) | −2.78 | <0.001 | −6.38 | <0.001 | −12.16 | <0.001 | −6.37 | <0.001 | −6.65 | <0.001 | −6.40 | <0.001 | −12.56 | <0.001 |
(SE) | (0.18) | – | (0.45) | – | (1.11) | – | (0.62) | – | (0.62) | – | (0.85) | – | (1.06) | – |
95% C.I. | 0.36 | – | 0.88 | – | 2.18 | – | 1.22 | – | 1.22 | – | 1.66 | – | 2.08 | – |
Cross val. 2/3 diff. | −0.04 | <0.001 | −0.44 | <0.001 | −2.01 | <0.001 | −0.62 | <0.001 | 0.31 | <0.001 | −0.41 | <0.001 | −0.94 | <0.001 |
Cross val. 1/3 diff. | −0.16 | <0.001 | 0.28 | <0.001 | 0.37 | <0.001 | 0.23 | <0.001 | −0.22 | <0.001 | 1.11 | <0.001 | 1.23 | <0.001 |
Fixed Intercept in seconds (c) | 37.23 | <0.001 | 83.81 | <0.001 | 179.45 | <0.001 | 95.33 | <0.001 | 104.35 | <0.001 | 92.79 | <0.001 | 195.98 | <0.001 |
(SE) | (0.38) | – | (0.99) | – | (2.39) | – | (1.37) | – | (1.12) | – | (1.65) | – | (2.21) | – |
95% C.I. | 0.74 | – | 1.94 | – | 4.67 | – | 2.68 | – | 2.34 | – | 3.23 | – | 4.33 | – |
Cross val. 2/3 diff. | 0.07 | <0.001 | 1.48 | <0.001 | 5.36 | <0.001 | 1.57 | <0.001 | 0.59 | <0.001 | 0.77 | <0.001 | 1.86 | <0.001 |
Cross val. 1/3 diff | 0.17 | <0.001 | −2.47 | <0.001 | −3.97 | <0.001 | −0.88 | <0.001 | 0.33 | <0.001 | −2.19 | <0.001 | −3.26 | <0.001 |
Interclass correlation (ICC) | 0.95 | 0.97 | 0.96 | 0.97 | 0.91 | 0.90 | 0.92 | |||||||
Wald’s χ2 | 543.36 (df = 7) | 479.95 (df = 7) | 315.318 (df = 7) | 298.98 (df = 7) | 430.27 (df = 5) | 318.57 (df = 5) | 461.07 (df = 5) | |||||||
Total R2 | 0.25 | 0.23 | 0.16 | 0.17 | 0.20 | 0.22 | 0.17 | |||||||
n | 376 | 280 | 190 | 178 | 196 | 132 | 139 |
Predictor | 50 m Freestyle | 100 m Freestyle | 200 m Freestyle | 100 m Backstroke | 100 m Breaststroke | 100 m Butterfly | 200 m Individual Medley |
---|---|---|---|---|---|---|---|
% Rate of improvement (12 year—peak age) | 24.70 | 25.29 | 22.15 | 22.64 | 22.03 | 26.92 | 20.75 |
% Rate of improvement (from 12 to 18.5 year) | 24.70 | 25.28 | 22.15 | 22.60 | 22.02 | 26.16 | 20.75 |
Threshold age in peak performance (year) | 18.5 (0.12) | 18.7 (0.06) | 18.6 (0.14) | 18.7 (0.08) | 18.6 (0.08) | 19.8 (0.11) | 18.5 (0.14) |
Performance time (s) at threshold age | 28.26 (0.22) | 62.44 (1.53) | 139.54 (9.38) | 73.94 (2.07) | 82.26 (2.40) | 67.93 (3.09) | 155.35 (9.36) |
4. Discussion
4.1. Limitations
4.2. Practical Applications
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Sokolovas, G. Analysis of USA swimming’s all-time top 100 times. In Proceedings of the Xth International Symposium on Biomechanics and Medicine in Swimming; Vilas Boas, J.P., Alves, F., Marques, A., Eds.; University of Porto: Porto, Portugal, 2006; pp. 315–317. [Google Scholar]
- Costa, M.J.; Marinho, D.A.; Bragada, J.A.; Silva, A.J.; Barbosa, T.M. Stability of elite freestyle performance from childhood to adulthood. J. Sports Sci. 2011, 29, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.V.; Vandenbogaerde, T.J.; Hopkins, W.G. Career performance trajectories of olympic swimmers: Benchmarks for talent development. Eur. J. Sport Sci. 2014, 14, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.; Hopkins, W.; Roberts, A.; Pyne, D. Ability of test measures to predict competitive performance in elite swimmers. J. Sports Sci. 2008, 26, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Trewin, C.B.; Hopkins, W.G.; Pyne, D.B. Relationship between world-ranking and olympic performance of swimmers. J. Sports Sci. 2004, 22, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Pyne, D.B.; Trewin, C.B.; Hopkins, W.G. Progression and variability of competitive performance of olympic swimmers. J. Sports Sci. 2004, 22, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Avalos, M.; Hellard, P.; Chatard, J.-C. Modeling the training-performance relationship using a mixed model in elite swimmers. Med. Sci. Sports Exerc. 2003, 35, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, M.F.; Mountjoy, M.; Armstrong, N.; Chia, M.; Côté, J.; Emery, C.A.; Faigenbaum, A.; Hall, G.; Kriemler, S.; Léglise, M.; et al. International olympic committee consensus statement on youth athletic development. Br. J. Sports Med. 2015, 49, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.; Collins, D. Eliminating the dichotomy between theory and practice in talent identification and development: Considering the role of psychology. J. Sports Sci. 2004, 22, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Martindale, R.J.J.; Collins, D.; Daubney, J. Talent development: A guide for practice and research within sport. Quest 2005, 57, 353–375. [Google Scholar] [CrossRef]
- Lidor, R.; Côté, J.; Hackfort, D. Issp position stand: To test or not to test? The use of physical skill tests in talent detection and in early phases of sport development. Int. J. Sport Exerci. Psychol. 2009, 7, 131–146. [Google Scholar] [CrossRef]
- Bloom, B.S. Developing Talent in Young People; Ballantine Books: New York, NY, USA, 1985. [Google Scholar]
- Phillips, E.; Davids, K.; Renshaw, I.; Portus, M. Expert performance in sport and the dynamics of talent development. Sports Med. 2010, 40, 271–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dormehl, S.J.; Osborough, C.D. Effect of age, sex and race distance on front crawl stroke parameters in sub-elite adolescent swimmers during competition. Pediatr. Exerc. Sci. 2015, 27, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Burgess, D.J.; Naughton, G.A. Talent development in adolescent team sports: A review. Int. J. Sports Physiol. Perform. 2010, 5, 103–116. [Google Scholar] [PubMed]
- Vaeyens, R.; Lenoir, M.; Williams, A.M.; Philippaerts, R.M. Talent identification and development programmes in sport: Current models and future directions. Sports Med. 2008, 38, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.E.; Marques, M.C.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M. Longitudinal modeling in sports: Young swimmers’ performance and biomechanics profile. Hum. Mov. Sci. 2014, 37, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.J.; Bragada, J.A.; Marinho, D.A.; Lopez, V.P.; Silva, A.J.; Barbosa, T.M. Longitudinal study in male swimmers: A hierarchical modelling of energetics and biomechanical contributions for performance. J. Sports Sci. Med. 2013, 12, 614–622. [Google Scholar] [PubMed]
- Baxter-Jones, A.D.G.; Helms, P.; Maffulli, N.; Bainespreece, J.C.; Preece, M. Growth and development of male gymnasts, swimmers, soccer and tennis players: A longitudinal study. Ann. Hum. Biol. 1995, 22, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2005. [Google Scholar]
- Malina, R.M. Physical growth and biological maturation of young athletes. Exerc. Sport Sci. Rev. 1994, 22, 280–284. [Google Scholar] [CrossRef]
- Baxter-Jones, A.D.G. Growth and development of young athletes: Should competition levels be age related? Sports Med. 1995, 20, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Beunen, G.P.; Malina, R.M. Growth and physical performance relative to the timing of the adolescent spurt. Exerc. Sport Sci. Rev. 1988, 16, 503–540. [Google Scholar] [CrossRef] [PubMed]
- Maglischo, E.W. Swimming Fastest; Human Kinetics: Champaign, IL, USA, 2003; pp. 472–473. [Google Scholar]
- Barbosa, T.M.; Fernandes, R.; Keskinen, K.L.; Colaço, P.; Cardoso, C.; Silva, J.; Vilas-Boas, J.P. Evaluation of the energy expenditure in competitive swimming strokes. Int. J. Sports Med. 2006, 27, 894–899. [Google Scholar] [CrossRef] [PubMed]
- British Swimming & The ASA. British Swimming Championships Programme of Events. Available online: http://www.swimming.org/assets/uploads/events/British_Champs_2015_Event_Schedule3.pdf (accessed on 2 April 2015).
- Kiehl, G. Fina Mastbank Swimming World Cup; Fédération Internationale de Natation: Lausanne, Switzerland, 2014. [Google Scholar]
- International Olympic Committee. Olympic.Org. Available online: http://www.olympic.org/swimming (accessed on 25 October 2013).
- Vaso, M.; Knechtle, B.; Rüst, C.A.; Rosemann, T.; Lepers, R. Age of peak swim speed and sex difference in performance in medley and freestyle swimming—A comparison between 200 m and 400 m in swiss elite swimmers. J. Hum. Sport Exerc. 2013, 8, 954–965. [Google Scholar] [CrossRef] [Green Version]
- Amateur Swimming Association. The Swimmer Pathway: Long Term Athlete Development; ASA: Loughborough, UK, 2003. [Google Scholar]
- Seifert, L.; Delignieres, D.; Boulesteix, L.; Chollet, D. Effect of expertise on butterfly stroke coordination. J. Sports Sci. 2007, 25, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Sherar, L.B.; Baxter-Jones, A.D.G.; Faulkner, R.A.; Russell, K.W. Do physical maturity and birth date predict talent in male youth ice hockey players? J. Sports Sci. 2007, 25, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Dormehl, S.J.; Williams, C.A. Stability of within-sport specialisation in competitive adolescent sub-elite swimmers. Int. J. Perform. Anal. Sport 2016, in press. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dormehl, S.J.; Robertson, S.J.; Williams, C.A. Modelling the Progression of Male Swimmers’ Performances through Adolescence. Sports 2016, 4, 2. https://doi.org/10.3390/sports4010002
Dormehl SJ, Robertson SJ, Williams CA. Modelling the Progression of Male Swimmers’ Performances through Adolescence. Sports. 2016; 4(1):2. https://doi.org/10.3390/sports4010002
Chicago/Turabian StyleDormehl, Shilo J., Samuel J. Robertson, and Craig A. Williams. 2016. "Modelling the Progression of Male Swimmers’ Performances through Adolescence" Sports 4, no. 1: 2. https://doi.org/10.3390/sports4010002
APA StyleDormehl, S. J., Robertson, S. J., & Williams, C. A. (2016). Modelling the Progression of Male Swimmers’ Performances through Adolescence. Sports, 4(1), 2. https://doi.org/10.3390/sports4010002