Structural Analysis of Women’s Heptathlon
Abstract
:1. Introduction and Theoretical Framework
- (1)
- Run competitions (200 m, 800 m, and 100 m hurdles) = P = A × (B − T)C; T = time in seconds;
- (2)
- Jump competitions (high jump and long jump) = P = A × (M − B)C; M = measurement result in centimeters;
- (3)
- Throw competitions (shotput and javelin throw) = P = A × (D − B)C; D = distance in meters.
“ … that the new tables should be developed according to the following nine principles: … 3). The tables in all disciplines should be: a modification of current tables, linear in all disciplines, very slightly progressive in all disciplines […] 9) As far as possible, the tables should eliminate the possibility that an athlete specializing in one discipline is able to acquire sufficient points in that disciplines to overcome a low scores in weaker disciplines and beat more versatile all-round athletes.”
“When starting from the principle of all roundness, the ideal score distribution should be uniform over the disciplines. The large deviations from uniformity prompt for a revision of the current scoring method.”
- (1)
- (2)
- The extent to which, at an individual level, strengths and weaknesses in individual disciplines or clusters of disciplines can be balanced and/or overcompensated.
2. Methodology
2.1. Sampling and Survey Procedures
2.2. Data Analysis
- Factor 1 "Speed": 100 m hurdles, 200 m run, long jump, high jump;
- Factor 2 “Strength”: Javelin throw and shotput.
3. Results
3.1. Performance in Sub-Discipline and Points Achieved in Sub-Disciplines
3.2. Points Achieved in Individual Disciplines and Total Number of Points
3.3. Factor-Analytic Structure of Heptathlon and Total Number of Points
3.4. Cluster-Analytic Structure of the Heptathlon Type and Achieved Total Number of Points
4. Discussion
Author Contributions
Conflicts of Interest
References
- Trkal, V. The development of combined events scoring tables and implications for the training of decathletes. New Stud. Athl. 2003, 18, 7–12. [Google Scholar]
- Westera, W. Under Attack: The Heptathlon Scoring Method. Available online: http://www.athleticscoaching.ca (accessed on 1 November 2014).
- Pitsch, W.; Emrich, E.; Fröhlich, M.; Flatau, J. Zur Legitimation von Normen im Sport am Beispiel des Mehrkampfs in der Leichtathletik—Rechtsphilosophische und rechtssoziologische Positionen. Leipz. Sportwiss. Beitr. 2006, 47, 80–92. [Google Scholar]
- Cox, T.F.; Dunn, R.T. An analysis of decathlon data. J. R. Stat. Soc. Ser. D 2002, 51, 179–187. [Google Scholar]
- Letzelter, M. Zur Struktur des Siebenkampfes: Einflusshöhe und interne Verwandtschaft der Einzelübungen. In Frauenleichtathletik; Müller, N., Augustin, D., Hunger, B., Eds.; Schors-Verlag: Niederhauen/Taunus, Germany, 1985. [Google Scholar]
- Westera, W. Decathlon, towards a balanced and sustainable performance assessment method. New Stud. Athl. IAAF 2006, 21, 39–51. [Google Scholar]
- Kenny, I.C.; Sprevak, D.; Sharp, C.; Boreham, C. Determinants of success in the olympic decathlon: Some statistical evidence. J. Quant. Anal. Sports 2005, 1. [Google Scholar] [CrossRef]
- Schomaker, M.; Heumann, C. Model averaging in factor analysis: An analysis of olympic decathlon data. J. Quant. Anal. Sports 2011, 7. [Google Scholar] [CrossRef]
- Woolf, A.; Ansley, L.; Bidgood, P. Grouping of decathlon disciplines. J. Quant. Anal. Sports 2007, 3. [Google Scholar] [CrossRef]
- Wimmer, V.; Fenske, N.; Pyrka, P.; Fahrmeir, L. Exploring competition performance in decathlon using semi-parametric latent variable models. J. Quant. Anal. Sports 2011, 7. [Google Scholar] [CrossRef]
- Karlis, D.; Saporta, G.; Spinakis, A. A simple rule for the selection of principal components. Commun. Stat. Theory Methods 2003, 32, 643–666. [Google Scholar] [CrossRef]
- Dawkins, B.P.; Andreae, P.M.; O’Conner, P.M. Analysis of olympic heptathlon data. J. Am. Stat. Assoc. 1994, 89, 1100–1106. [Google Scholar] [CrossRef]
- Van Damme, R.; Wilson, R.S.; Vanhooydonck, B.; Aerts, P. Performance constraints in decathletes. Nature 2002, 415, 755–756. [Google Scholar] [CrossRef] [PubMed]
- Vindusková, J. Training women for the heptathlon—A brief outline. New Stud. Athl. 2003, 18, 27–45. [Google Scholar]
- Kihlberga, J.; Karvonena, M.J. Comparison on statistical basis of achievement in track and field events. Res. Q. Am. Assoc. Health Phys. Educ. Recreat. 1957, 28, 244–256. [Google Scholar]
- Greene, W.H. Econometric Analysis, 7th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer-Verlag: New York, NY, USA, 2002. [Google Scholar]
- Wiedenbeck, M.; Züll, C. Clusterananlyse. In Handbuch der Sozialwissenschaftlichen Datenanalyse; Wolf, C., Best, H., Eds.; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 2010; pp. 525–552. [Google Scholar]
- Burns, R.P.; Burns, R. Business Research Methods and Statistics Using SPSS; SAGE: London, UK, 2008. [Google Scholar]
- Park, J.; Zatsiorsky, V.M. Multivariate statistical analysis of decathlon performance results in olympic athletes (1988–2008). World Acad. Sci. Eng. Technol. 2011, 5, 985–988. [Google Scholar]
- Fanshawe, T. Seven into two: Principal components analysis and the olympic heptathlon. Significance 2012, 9, 40–42. [Google Scholar] [CrossRef]
- Linden, M. Factor analytical study of olympic decathlon data. Res. Q. Am. Alliance Health Phys. Educ. Recreat. 1977, 48, 562–568. [Google Scholar]
Disziplines | Factor 1 | Factor 2 |
---|---|---|
100 m hurdles | 0.73 | −0.24 |
High jump | 0.50 | 0.37 |
200 m run | 0.75 | −0.39 |
Long jump | 0.83 | 0.06 |
Shotput | −0.07 | 0.54 |
Javelin throw | −0.07 | 0.70 |
800 m run | 0.24 | −0.73 |
Individual Discipline | Slope Coefficient | Constant | Marginal Effect | ||
---|---|---|---|---|---|
(+1 STD) | (+2 STD) | (+3 STD) | |||
100 m hurdles | 52.16 *** | 1047.3 *** | 1099.4 | 1151.6 | 1203.8 |
High jump | 71.41 *** | 993.7 *** | 1065.1 | 1136.5 | 1207.9 |
Shot put | 75.73 *** | 800.9 *** | 876.6 | 952.4 | 1028.1 |
200 m run | 63.63 *** | 952.0 *** | 1015.7 | 1079.3 | 1142.9 |
Long jump | 86.66 *** | 949.3 *** | 1036.0 | 1122.6 | 1209.3 |
Javelin throw | 95.23 *** | 761.6 *** | 856.8 | 952.0 | 1047.1 |
800 m run | 60.52 *** | 909.8 *** | 970.4 | 1030.9 | 1091.4 |
Individual Discipline | Slope Coefficient | Constant | R² |
---|---|---|---|
100 m hurdles | 2.479 *** | 3827.1 *** | 0.333 |
High jump | 1.533 *** | 4903.4 *** | 0.208 |
Shot put | 0.705 ** | 5858.1 *** | 0.075 |
200 m run | 2.141 *** | 4384.7 *** | 0.380 |
Long jump | 1.818 *** | 4698.3 *** | 0.480 |
Javelin throw | 0.629 *** | 5943.1 *** | 0.078 |
800 m run | 0.958 ** | 5553.8 *** | 0.069 |
TP | 100 | HI | SP | 200 | LS | JT | 800 | |
---|---|---|---|---|---|---|---|---|
TP | 1 | |||||||
100 | 0.58 | 1 | ||||||
(0.00) | ||||||||
HI | 0.49 | 0.04 | 1 | |||||
(0.00) | (0.59) | |||||||
SP | 0.24 | −0.14 | −0.06 | 1 | ||||
(0.00) | (0.04) | (0.44) | ||||||
200 | 0.61 | 0.61 | 0.10 | −0.15 | 1 | |||
(0.00) | (0.00) | (0.14) | (0.04) | |||||
LS | 0.70) | 0.45 | 0.32 | −0.03 | 0.48 | 1 | ||
(0.00 | (0.00) | (0.00) | (0.64) | (0.00) | ||||
JS | 0.26 | −0.09 | 0.07 | 0.19 | −0.24 | −0.13 | 1 | |
(0.00) | (0.18) | (0.31) | (0.01) | (0.00) | (0.06) | |||
800 | 0.26 | 0.25 | −0.01 | −0.26 | 0.41 | 0.12 | −0.35 | 1 |
(0.00) | (0.00) | (0.89) | (0.00) | (0.00) | (0.09) | (0.00) |
Disciplines | Model 1 Factor 1 (Speed) | Model 2 Factor 2 (Strength) | Model 3 Factor 3 (Endurance) |
---|---|---|---|
100 m hurdles | 1.077 *** (4.60) | ||
High jump | 1.064 *** (11.16) | ||
200 m run | 0.872 *** (5.94) | ||
Long jump | 0.925 *** (7.05) | ||
Shot put | 0.578 * (2.54) | ||
Javelin throw | 0.537 *** (4.50) | ||
800 m run | 0.958 ** (3.22) | ||
Constant | 2531.1 *** (11.88) | 5548.0 *** (30.37) | 5553.8 *** (20.64) |
N | 200 | 200 | 200 |
R2 | 0.721 | 0.102 | 0.069 |
Adjusted R2 | 0.715 | 0.093 | 0.065 |
Average R² (R²/number of IV) | 0.180 | 0.051 | 0.069 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gassmann, F.; Fröhlich, M.; Emrich, E. Structural Analysis of Women’s Heptathlon. Sports 2016, 4, 12. https://doi.org/10.3390/sports4010012
Gassmann F, Fröhlich M, Emrich E. Structural Analysis of Women’s Heptathlon. Sports. 2016; 4(1):12. https://doi.org/10.3390/sports4010012
Chicago/Turabian StyleGassmann, Freya, Michael Fröhlich, and Eike Emrich. 2016. "Structural Analysis of Women’s Heptathlon" Sports 4, no. 1: 12. https://doi.org/10.3390/sports4010012
APA StyleGassmann, F., Fröhlich, M., & Emrich, E. (2016). Structural Analysis of Women’s Heptathlon. Sports, 4(1), 12. https://doi.org/10.3390/sports4010012