Accuracy of Voluntary Force Modulation During the Isometric Mid-Thigh Pull
Abstract
1. Introduction
2. Methods
2.1. Experimental Approach to the Problem
2.2. Subjects
2.3. Procedures
2.3.1. Hydration Testing and Anthropometrics
2.3.2. Standardized Warm-Up
2.3.3. Procedures for Submaximal and Maximal IMTP Testing
2.4. Calculation of Intended Net IPF and Relative Error
2.5. Statistical Analysis
3. Results
3.1. Reliability of Net Isometric Peak Force Measurements
3.2. Net Isometric Peak Force at 25% Relative Intensity
3.3. Net Isometric Peak Force at 50% Relative Intensity
3.4. Net Isometric Peak Force at 75% Relative Intensity
3.5. Effects of Testing Order and Relative Error in Force Modulation
3.6. Average Relative Error and Sex-Based Differences
3.7. Associations Between Subject Relative Strength and Average Relative Error
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beckham, G.; Mizuguchi, S.; Carter, C.; Sato, K.; Ramsey, M.; Lamont, H.; Hornsby, G.; Haff, G.; Stone, M. Relationships of Isometric Mid-Thigh Pull Variables to Weightlifting Performance. J. Sports Med. Phys. Fit. 2013, 53, 573–581. [Google Scholar]
- Comfort, P.; Dos’Santos, T.; Beckham, G.K.; Stone, M.H.; Guppy, S.N.; Haff, G.G. Standardization and Methodological Considerations for the Isometric Midthigh Pull. Strength Cond. J. 2019, 41, 57–79. [Google Scholar] [CrossRef]
- Nuzzo, J.L.; McBride, J.M.; Cormie, P.; McCaulley, G.O. Relationship between Countermovement Jump Performance and Multijoint Isometric and Dynamic Tests of Strength. J. Strength Cond. Res. 2008, 22, 699–707. [Google Scholar] [CrossRef]
- Stone, M.H.; Sands, W.A.; Pierce, K.C.; Carlock, J.; Cardinale, M.; Newton, R.U. Relationship of Maximum Strength to Weightlifting Performance. Med. Sci. Sports Exerc. 2005, 37, 1037–1043. [Google Scholar] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Comfort, P.; Chiang, C.-Y.; Jones, P.A. Relationship between Isometric Mid-Thigh Pull Variables and Sprint and Change of Direction Performance in Collegiate Athletes. J. Trainol. 2015, 4, 6–10. [Google Scholar] [CrossRef]
- Townsend, J.R.; Bender, D.; Vantrease, W.C.; Hudy, J.; Huet, K.; Williamson, C.; Bechke, E.; Serafini, P.R.; Mangine, G.T. Isometric Midthigh Pull Performance Is Associated with Athletic Performance and Sprinting Kinetics in Division I Men and Women’s Basketball Players. J. Strength Cond. Res. 2019, 33, 2665–2673. [Google Scholar] [CrossRef]
- Brady, C.J.; Harrison, A.J.; Comyns, T.M. A Review of the Reliability of Biomechanical Variables Produced during the Isometric Mid-Thigh Pull and Isometric Squat and the Reporting of Normative Data. Sports Biomech. 2020, 19, 1–25. [Google Scholar] [CrossRef]
- Haff, G.G.; Stone, M.; O’Bryant, H.S.; Harman, E.; Dinan, C.; Johnson, R.; Han, K.-H. Force-Time Dependent Characteristics of Dynamic and Isometric Muscle Actions. J. Strength Cond. Res. 1997, 11, 269. [Google Scholar]
- Kraska, J.M.; Ramsey, M.W.; Haff, G.G.; Fethke, N.; Sands, W.A.; Stone, M.E.; Stone, M.H. Relationship between Strength Characteristics and Unweighted and Weighted Vertical Jump Height. Int. J. Sports Physiol. Perform. 2009, 4, 461–473. [Google Scholar] [CrossRef]
- Torres-Ronda, L.; Sánchez-Medina, L.; González-Badillo, J.J. Muscle Strength and Golf Performance: A Critical Review. J. Sports Sci. Med. 2011, 10, 9–18. [Google Scholar]
- Torres-Ronda, L.; Delextrat, A. The Relationship between Golf Performance, Anthropometrics, Muscular Strength and Power Characteristics in Young Elite Players. Int. SportMed J. 2014, 15, 156–164. [Google Scholar]
- Cabarkapa, D.; Eserhaut, D.A.; Fry, A.C.; Cabarkapa, D.V.; Philipp, N.M.; Whiting, S.M.; Downey, G.G. Relationship between Upper and Lower Body Strength and Basketball Shooting Performance. Sports 2022, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Miao, X.; Rupčić, T.; Sansone, P.; Vencúrik, T.; Li, F.; Zhang, M.; Miao, X.; Rupčić, T.; Sansone, P.; et al. Determining the Relationship between Physical Capacities, Metabolic Capacities, and Dynamic Three-Point Shooting Accuracy in Professional Female Basketball Players. Appl. Sci. 2023, 13, 8624. [Google Scholar] [CrossRef]
- Keller, J.L.; Housh, T.J.; Smith, C.M.; Hill, E.C.; Schmidt, R.J.; Johnson, G.O. Sex-Related Differences in the Accuracy of Estimating Target Force Using Percentages of Maximal Voluntary Isometric Contractions vs. Ratings of Perceived Exertion During Isometric Muscle Actions. J. Strength Cond. Res. 2018, 32, 3294–3300. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Kizuka, T.; Ono, S. The Influence of Contraction Types on the Relationship Between the Intended Force and the Actual Force. J. Mot. Behav. 2020, 52, 687–693. [Google Scholar] [CrossRef]
- Rizzato, A.; Cantarella, G.; Basso, E.; Paoli, A.; Rotundo, L.; Bisiacchi, P.; Marcolin, G. Relationship between Intended Force and Actual Force: Comparison between Athletes and Non-Athletes. PeerJ 2024, 12, e17156. [Google Scholar] [CrossRef]
- Clamann, H.P. Motor Unit Recruitment and the Gradation of Muscle Force. Phys. Ther. 1993, 73, 830–843. [Google Scholar] [CrossRef]
- Enoka, R.M.; Duchateau, J. Rate Coding and the Control of Muscle Force. Cold Spring Harb. Perspect. Med. 2017, 7, a029702. [Google Scholar] [CrossRef]
- Folland, J.P.; Williams, A.G. The Adaptations to Strength Training: Morphological and Neurological Contributions to Increased Strength. Sports Med. 2007, 37, 145–168. [Google Scholar] [CrossRef]
- Calderón, J.C.; Bolaños, P.; Caputo, C. The Excitation–Contraction Coupling Mechanism in Skeletal Muscle. Biophys. Rev. 2014, 6, 133–160. [Google Scholar] [CrossRef]
- Shishmarev, D. Excitation-Contraction Coupling in Skeletal Muscle: Recent Progress and Unanswered Questions. Biophys. Rev. 2020, 12, 143–153. [Google Scholar] [CrossRef]
- Enoka, R.M. Morphological Features and Activation Patterns of Motor Units. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 1995, 12, 538–559. [Google Scholar] [CrossRef] [PubMed]
- Pincivero, D.M.; Coelho, A.J.; Campy, R.M.; Salfetnikov, Y.; Suter, E. Knee Extensor Torque and Quadriceps Femoris EMG during Perceptually-Guided Isometric Contractions. J. Electromyogr. Kinesiol. 2003, 13, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, D.; Pal, M.; Chatterjee, P.; Bandyopadhyay, A. Neuromuscular Adaptations in Handgrip Force Control: An Electromyographic Comparison of Volleyball Athletes and Sedentary Young Adults. Int. J. Phys. Educ. Sports Health 2025, 12, 26–31. [Google Scholar] [CrossRef]
- Comfort, P.; McMahon, J.J.; Lake, J.P.; Ripley, N.J.; Triplett, N.T.; Haff, G.G. Relative Strength Explains the Differences in Multi-Joint Rapid Force Production between Sexes. PLoS ONE 2024, 19, e0296877. [Google Scholar] [CrossRef]
- Knol, H.; Huys, R.; Temprado, J.-J.; Sleimen-Malkoun, R. Performance, Complexity and Dynamics of Force Maintenance and Modulation in Young and Older Adults. PLoS ONE 2019, 14, e0225925. [Google Scholar] [CrossRef]
- Pethick, J.; Taylor, M.J.D.; Harridge, S.D.R. Aging and Skeletal Muscle Force Control: Current Perspectives and Future Directions. Scand. J. Med. Sci. Sports 2022, 32, 1430–1443. [Google Scholar] [CrossRef]
- Casa, D.J.; Armstrong, L.E.; Hillman, S.K.; Montain, S.J.; Reiff, R.V.; Rich, B.S.; Roberts, W.O.; Stone, J.A. National Athletic Trainers’ Association Position Statement: Fluid Replacement for Athletes. J. Athl. Train. 2000, 35, 212–224. [Google Scholar]
- Pinto, B.L.; Callaghan, J.P. Movement Onset Detection Methods: A Comparison Using Force Plate Recordings. J. Appl. Biomech. 2023, 39, 118–123. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Lake, J.; Jones, P.A.; Comfort, P. Effect of Low-Pass Filtering on Isometric Midthigh Pull Kinetics. J. Strength Cond. Res. 2018, 32, 983–989. [Google Scholar] [CrossRef]
- Folland, J.P.; Mc Cauley, T.M.; Williams, A.G. Allometric Scaling of Strength Measurements to Body Size. Eur. J. Appl. Physiol. 2008, 102, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Lietzke, M.H. Relation between Weight-Lifting Totals and Body Weight. Science 1956, 124, 486–487. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Atkinson, G.; Nevill, A.M. Statistical Methods for Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. A Scale of Magnitudes of Effect Statistics. Available online: https://sportsci.org/resource/stats/index.html (accessed on 31 December 2025).
- Fouladi, R.T.; Steiger, J.H. The Fisher Transform of the Pearson Product Moment Correlation Coefficient and Its Square: Cumulants, Moments, and Applications. Commun. Stat.—Simul. Comput. 2008, 37, 928–944. [Google Scholar] [CrossRef]
- Hollingworth, H.L. The Central Tendency of Judgment. J. Philos. Psychol. Sci. Methods 1910, 7, 461. [Google Scholar] [CrossRef]
- Jones, L.A.; Hunter, I.W. Force Sensation in Isometric Contractions: A Relative Force Effect. Brain Res. 1982, 244, 186–189. [Google Scholar] [CrossRef]
- Jackson, A.W.; Ludtke, A.W.; Martin, S.B.; Koziris, L.P.; Dishman, R.K. Perceived Submaximal Force Production in Young Adults. Res. Q. Exerc. Sport 2006, 77, 50–57. [Google Scholar] [CrossRef]
- West, S.J.; Smith, L.; Lambert, E.V.; Noakes, T.D.; Gibson, A.S.C. Submaximal Force Production during Perceptually Guided Isometric Exercise. Eur. J. Appl. Physiol. 2005, 95, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Balshaw, T.G.; Massey, G.J.; Maden-Wilkinson, T.M.; Morales-Artacho, A.J.; McKeown, A.; Appleby, C.L.; Folland, J.P. Changes in Agonist Neural Drive, Hypertrophy and Pre-Training Strength All Contribute to the Individual Strength Gains after Resistance Training. Eur. J. Appl. Physiol. 2017, 117, 631–640. [Google Scholar] [CrossRef] [PubMed]






| Total Sample (n = 36) | Males (n = 18) | Females (n = 18) | |
| Age (yrs) | 23.7 ± 5.2 | 24.8 ± 5.8 | 22.7 ± 4.4 |
| Training Age (yrs) | 7.2 ± 4.7 | 8.3 ± 5.0 | 6.2 ± 4.4 |
| BM (kg) | 76.3 ± 12.0 | 84.3 ± 10.0 | 68.4 ± 7.9 |
| Ht. (m) | 1.70 ± 0.09 | 1.75 ± 0.07 | 1.65 ± 0.07 |
| IPF (N) | 2869 ± 817 | 3546 ± 505 | 2192 ± 385 |
| IPFa (N/kg0.67) | 156.0 ± 35.1 | 182.2 ± 23.5 | 129.8 ± 23.0 |
| ICC3,1 | |||
| Total Sample | Males | Females | |
| 25% | 0.850 (0.726 to 0.921) | 0.765 (0.474 to 0.905) | 0.682 (0.328 to 0.868) |
| 50% | 0.908 (0.828 to 0.952) | 0.802 (0.545 to 0.921) | 0.820 (0.582 to 0.929) |
| 75% | 0.952 (0.909 to 0.975) | 0.897 (0.747 to 0.960) | 0.862 (0.668 to 0.946) |
| 100% | 0.994 (0.989 to 0.997) | 0.981 (0.951 to 0.993) | 0.983 (0.954 to 0.993) |
| CV | |||
| Total Sample | Males | Females | |
| 25% | 8.4 (6.5 to 10.3) | 7.1 (4.8 to 9.4) | 9.7 (6.5 to 12.9) |
| 50% | 6.6 (5.1 to 8.1) | 6.4 (4.3 to 8.5) | 6.9 (4.6 to 9.2) |
| 75% | 5.0 (3.8 to 6.2) | 4.7 (3.2 to 6.2) | 5.4 (3.6 to 7.2) |
| 100% | 1.7 (1.3 to 2.1) | 1.5 (1.0 to 2.0) | 1.9 (1.3 to 2.5) |
| Peak Force (N) | Effect Sizes (Hedges’ g) | |||||
| ASC25 | DESC25 | INT25 | ASC25 vs. DESC25 | ASC25 vs. INT25 | DESC25 vs. INT25 | |
| M | 1108 ± 361 | 1232 ± 405 | 680 ± 117 | −0.35 (−0.69 to −0.01) | 1.14 (0.70 to 1.56) | 1.29 (0.83 to 1.73) |
| F | 690 ± 251 | 692 ± 284 | 380 ± 94 | −0.01 (−0.34 to 0.33) | 0.82 (0.43 to 1.20) | 0.73 (0.35 to 1.10) |
| ASC50 | DESC50 | INT50 | ASC50 vs. DESC50 | ASC50 vs. INT50 | DESC50 vs. INT50 | |
| M | 1507 ± 399 | 1580 ± 495 | 1359 ± 235 | −0.22 (−0.56 to 0.12) | 0.38 (0.04 to 0.73) | 0.49 (0.13 to 0.83) |
| F | 908 ± 265 | 898 ± 294 | 761 ± 188 | 0.03 (−0.30 to 0.36) | 0.38 (0.04 to 0.72) | 0.30 (−0.04 to 0.64) |
| ASC75 | DESC75 | INT75 | ASC75 vs. DESC75 | ASC75 vs. INT75 | DESC75 vs. INT75 | |
| M | 1815 ± 420 | 1860 ± 451 | 2039 ± 352 | −0.18 (−0.51 to 0.16) | −0.60 (−0.96 to −0.24) | −0.41 (−0.75 to −0.06) |
| F | 1104 ± 304 | 1071 ± 282 | 1141 ± 282 | 0.13 (−0.21 to 0.46) | −0.10 (−0.43 to 0.23) | −0.16 (−0.49 to 0.18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Long, S.A.; Vadas, O.; Balint, S.; Stone, M.H.; Taber, C.B. Accuracy of Voluntary Force Modulation During the Isometric Mid-Thigh Pull. Sports 2026, 14, 83. https://doi.org/10.3390/sports14020083
Long SA, Vadas O, Balint S, Stone MH, Taber CB. Accuracy of Voluntary Force Modulation During the Isometric Mid-Thigh Pull. Sports. 2026; 14(2):83. https://doi.org/10.3390/sports14020083
Chicago/Turabian StyleLong, S. Alexander, Olivia Vadas, Stephanie Balint, Michael H. Stone, and Christopher B. Taber. 2026. "Accuracy of Voluntary Force Modulation During the Isometric Mid-Thigh Pull" Sports 14, no. 2: 83. https://doi.org/10.3390/sports14020083
APA StyleLong, S. A., Vadas, O., Balint, S., Stone, M. H., & Taber, C. B. (2026). Accuracy of Voluntary Force Modulation During the Isometric Mid-Thigh Pull. Sports, 14(2), 83. https://doi.org/10.3390/sports14020083

