Cardiovascular Functioning Features in Individuals with Connective Tissue Dysplasia Engaged in Sports for the Disabled
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Cardiology Screening
2.3. Body Composition Analysis
2.4. Twelve-Leads Resting ECG
2.5. Transthoracic Echocardiography (TTE)
2.6. Hemodynamic Monitoring
2.7. Exercise Testing
2.8. Statistical Analysis
3. Results
3.1. Echocardiographic Markers of CTD and TTE Data
3.2. Twelve-Leads Resting ECG Findings
3.3. Hemodynamic Monitoring
3.4. Exercise Testing
3.5. Between-Group Analysis
3.5.1. Differences Across Sport Types
3.5.2. Differences Across Nosology Groups
3.5.3. Effect Sizes
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| LV | Left ventricle |
| CTD | Connective tissue dysplasia |
| LVFTs | False tendons in the LV |
| TTE | Transthoracic echocardiography |
| ECG | Electrocardiography |
| VO2max | Maximum oxygen consumption |
| ICG | Impedance cardiography |
| QTc | Corrected QT interval |
| ET | Exercise testing |
References
- Carty, C.; van der Ploeg, H.P.; Biddle, S.J.H.; Bull, F.; Willumsen, J.; Lee, L.; Kamenov, K.; Milton, K. The First Global Physical Activity and Sedentary Behavior Guidelines for People Living With Disability. J. Phys. Act. Health 2021, 18, 86–93. [Google Scholar] [CrossRef]
- Ely, M.R.; Singh, T.K.; Baggish, A.L.; Taylor, J.A. Reductions in Cardiac Structure and Function 24 Months After Spinal Cord Injury: A Cross-Sectional Study. Arch. Phys. Med. Rehabil. 2021, 102, 1490–1498. [Google Scholar] [CrossRef] [PubMed]
- Kurtoğlu, A.; Kurtoğlu, E.; Konar, N.; Çar, B.; Eken, Ö.; Prieto-González, P.; Nobari, H. Comparison of echocardiographic parameters of amputee football players with active football players and sedentary individuals. BMC Sports Sci. Med. Rehabil. 2023, 15, 41. [Google Scholar] [CrossRef] [PubMed]
- Lagu, T.; Schroth, S.L.; Haywood, C.; Heinemann, A.; Kessler, A.; Morse, L.; Khan, S.S.; Kershaw, K.N.; Nash, M.S. Diagnosis and Management of Cardiovascular Risk in Individuals With Spinal Cord Injury: A Narrative Review. Circulation 2023, 148, 268–277. [Google Scholar] [CrossRef]
- Nash, M.S.; Gater, D.R., Jr. Cardiometabolic Disease and Dysfunction Following Spinal Cord Injury: Origins and Guideline-Based Countermeasures. Phys. Med. Rehabil. Clin. N. Am. 2020, 31, 415–436. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, A.; Quattrini, F.M.; Cavarretta, E.; Squeo, M.R.; Adami, P.E.; Di Paolo, F.M.; Spataro, A.; Bernardi, M. Physiologic and Clinical Features of the Paralympic Athlete’s Heart. JAMA Cardiol. 2021, 6, 30–39. [Google Scholar] [CrossRef]
- Price, D.T.; Davidoff, R.; Balady, G.J. Comparison of cardiovascular adaptations to long-term arm and leg exercise in wheelchair athletes versus long-distance runners. Am. J. Cardiol. 2000, 85, 996–1001. [Google Scholar] [CrossRef]
- Salvetti, X.M.; de Mello, M.T.; da Silva, A.C.; Filho, B.L. Coronary risk in a cohort of Paralympic athletes. Br. J. Sports Med. 2006, 40, 918–922. [Google Scholar] [CrossRef]
- Sawczuk, D.; Gać, P.; Poręba, R.; Poręba, M. The Prevalence of Cardiovascular Diseases in Paralympic Athletes. Healthcare 2023, 11, 1027. [Google Scholar] [CrossRef]
- Simões, J.F.C.P.M.; Vlaminck, S.; Seiça, R.M.F.; Acke, F.; Miguéis, A.C.E. Cardiovascular Risk and Sudden Sensorineural Hearing Loss: A Systematic Review and Meta-Analysis. Laryngoscope 2023, 133, 15–24. [Google Scholar] [CrossRef]
- Williams, A.M.; Gee, C.M.; Voss, C.; West, C.R. Cardiac consequences of spinal cord injury: Systematic review and meta-analysis. Heart 2019, 105, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Kildyarova, R.R.; Nechayeva, G.I.; Chernyshova, T.E. Connective Tissue Dysplasia. Connect. Tissue Dysplasia 2019, 1–160. [Google Scholar] [CrossRef]
- Abramova, M.F.; Pikov, M.I. Assessment of hemodynamic disturbance in connective tissue dysplasia syndrome of extracerebral and cerebral vessels in children. Med. Alph. 2024, 15, 31–36. (In Russian) [Google Scholar] [CrossRef]
- Druk, I.V.; Nechaeva, G.I.; Oseeva, O.V.; Pomorgaĭlo, E.G.; Maksimov, V.N.; Ivanoshchuk, D.E.; Gol’tiapin, V.V. Personalized Risk Assessment of Adverse Cardiovascular Events in Young Patients With Connective Tissue Dysplasia. Kardiologiia 2015, 55, 75–84. (In Russian) [Google Scholar] [CrossRef]
- Filipenko, P.S.; Malookaia, I.S. The role of connective tissue dysplasia in the forming of mitral valve prolapse. Klin. Med. 2006, 84, 13–19. (In Russian) [Google Scholar]
- Mosca, M.; Tani, C.; Vagnani, S.; Carli, L.; Bombardieri, S. The diagnosis and classification of undifferentiated connective tissue diseases. J. Autoimmun. 2014, 48, 50–52. [Google Scholar] [CrossRef]
- Klemenov, A.V. Extracardiac manifestations of undifferentiated connective tissue dysplasia. Klin. Med. 2003, 81, 4–7. (In Russian) [Google Scholar]
- Zhuravleva, A.N.; Satybaldyev, A.M.; Zinchenko, R.A.; Kirillova, M.O.; Kadyshev, V.V. Analysis of associations of undifferentiated connective tissue dysplasia with the development of primary open-angle glaucoma. Clinical and genetic aspects. Vestn. Oftalmol. 2021, 137, 74–80. (In Russian) [Google Scholar] [CrossRef]
- Ahmad, Z.S.; Koshy, C.; Koshy, G.A. Echocardiographic study of left ventricular false tendons. J. Indian. Acad. Echocardiogr. Cardiovasc. Imaging 2019, 3, 150–155. [Google Scholar] [CrossRef]
- Bhatt, M.R.; Alfonso, C.E.; Bhatt, A.M.; Lee, S.; Ferreira, A.C.; Salerno, T.A.; de Marchena, E. Effects and mechanisms of left ventricular false tendons on functional mitral regurgitation in patients with severe cardiomyopathy. J. Thorac. Cardiovasc. Surg. 2009, 138, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.E.; Halinski, J.A.; Skelton, T.N.; Campbell, W.F.; McMullan, M.R.; Long, R.C.; Alexander, M.N.; Pollard, J.D.; Hall, J.E.; Fox, E.R.; et al. Left Ventricular False Tendons are Associated With Left Ventricular Dilation and Impaired Systolic and Diastolic Function. Am. J. Med. Sci. 2017, 354, 278–284. [Google Scholar] [CrossRef]
- Halle, M.; Wolfarth, B. Sudden cardiac death in sports. MMW Fortschr. Med. 2006, 148, 38–40. (In German) [Google Scholar] [CrossRef] [PubMed]
- Iagoda, A.V.; Gladkikh, N.N. Assessment of a complex of external phenotypic signs for the detection of minor cardiac anomalies. Klin. Med. 2004, 82, 30–33. (In Russian) [Google Scholar]
- Kenchaiah, S.; Benjamin, E.J.; Evans, J.C.; Aragam, J.; Vasan, R.S. Epidemiology of left ventricular false tendons: Clinical correlates in the Framingham heart study. J. Am. Soc. Echocardiogr. 2009, 22, 739–745. [Google Scholar] [CrossRef]
- Keren, A.; Billingham, M.E.; Popp, R.L. Echocardiographic recognition and implications of ventricular hypertrophic trabeculations and aberrant bands. Circulation 1984, 70, 836–842. [Google Scholar] [CrossRef]
- Keren, A.; Billingham, M.E.; Popp, R.L. Ventricular aberrant bands and hypertrophic trabeculations. A clinical pathological correlation. Am. J. Cardiovasc. Pathol. 1988, 1, 369–378. [Google Scholar]
- Kondrashova, V.G.; Sheĭko, L.P.; Kondrashova, N.S. Abnormal chords of the left ventricle. Lik. Sprava. 2009, 7–8, 3–11. (In Russian) [Google Scholar]
- Korzhenkov, A.A.; Riabikov, A.N.; Maliutina, S.K. Incidence of accessory chordae in the left ventricle and premature ventricular repolarization syndrome (a population study). Kardiologiia 1991, 31, 75–76. (In Russian) [Google Scholar]
- Lazarevic, Z.; Ciminelli, E.; Quaranta, F.; Sperandii, F.; Guerra, E.; Pigozzi, F.; Borrione, P. Left ventricular false tendons and electrocardiogram repolarization abnormalities in healthy young subjects. World J. Cardiol. 2016, 8, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Luetmer, P.H.; Edwards, W.D.; Seward, J.B.; Tajik, A.J. Incidence and distribution of left ventricular false tendons: An autopsy study of 483 normal human hearts. J. Am. Coll. Cardiol. 1986, 8, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Malouf, J.; Gharzuddine, W.; Kutayli, F. A reappraisal of the prevalence and clinical importance of left ventricular false tendons in children and adults. Br. Heart J. 1986, 55, 587–591. [Google Scholar] [CrossRef]
- Mikhaĭlova, A.V.; Smolenskiĭ, A.V. Clinical features and physical fitness parameters in athletes with cardiac connective tissue dysplasia syndrome. Klin. Med. 2004, 82, 44–48. (In Russian) [Google Scholar]
- Nishimura, T.; Kondo, M.; Umadome, H.; Shimono, Y. Echocardiographic features of the false tendons in the left ventricle. Am. J. Cardiol. 1981, 48, 177–183. [Google Scholar] [CrossRef]
- Osovska, N.; Kuzminova, N.; Ovcharuk, M.; Serhiychuk, O. Structural heart anomalies (Review). Georgian Med. News 2016, 255, 66–77. [Google Scholar]
- Perekal’skaia, M.A.; Vereshchagina, G.N.; Makarova, L.I.; Khramova, E.V. Cardiac syndrome in females with systemic undifferentiated dysplasia of the connective tissue. Klin. Med. 2002, 80, 28–32. (In Russian) [Google Scholar]
- Philip, S.; Cherian, K.M.; Wu, M.H.; Lue, H.C. Left ventricular false tendons: Echocardiographic, morphologic, and histopathologic studies and review of the literature. Pediatr. Neonatol. 2011, 52, 279–286. [Google Scholar] [CrossRef]
- Pisiak, S.; Dorniak, K.; Hellmann, M.; Rawicz-Zegrzda, D.; Węsierska, M.; Dudziak, M. Left ventricular false tendons: Echocardiographic characteristics in the Polish population. Folia Morphol. 2015, 74, 225–228. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Silbiger, J.J. Left ventricular false tendons: Anatomic, echocardiographic, and pathologic insights. J. Am. Soc. Echocardiogr. 2013, 26, 582–588. [Google Scholar] [CrossRef]
- Solyeyko, O.V.; Osypenko, I.P.; Galych, T.V.; Chernykh, M.O. Assessment of rehabilitation potential in patients with vascular dysfunction caused by undifferentiated connective tissue dysplasia. Wiad. Lek. 2017, 70, 282–285. [Google Scholar]
- Sumarokov, A.V.; Domnitskaia, T.M.; Ovcharenko, K.I.; Sedov, V.P.; Mordasova, L.A. Anomalously located chordae in the left ventricular cavity in the complex manifestations of minor connective tissue anomalies. Ter. Arkh. 1988, 60, 143–145. (In Russian) [Google Scholar] [PubMed]
- Trisvetova, E.L.; Bova, A.A. Minor heart defects. Klin. Med. 2002, 80, 9–15. (In Russian) [Google Scholar]
- Turner, W. Another heart with moderator band in left ventricle. J. Anat. Physiol. 1896, 30, 568–569. [Google Scholar] [PubMed]
- Mekhdieva, K.; Blyakhman, F. Impact of left ventricular false tendons on young athletes’ cardiovascular adaptation to exercise loads. J. Mech. Med. Biol. 2017, 15, 1750066. [Google Scholar] [CrossRef]
- Mekhdieva, K.; Timokhina, V.; Sokolov, S.Y.; Blyakhman, F.A. Cardiac regional function of young sportsmen with false tendons in the left ventricle. J. Mech. Med. Biol. 2015, 15, 1540010. [Google Scholar] [CrossRef]
- Zinovyeva, Y.A.; Mekhdieva, K.R.; Sokolov, S.Y.; Blyakhman, F.A. Mapping of False Tendons in the Left Ventricle Based on the Heart Transthoracic Ultrasound Visualization. J. Med. Imaging Health Inform. 2015, 5, 1217–1222. [Google Scholar] [CrossRef]
- Blyakhman, F. Left ventricular inhomogeneity and the heart’s functional reserve. In Cardiac Perfusion and Pumping Engineering; World Scientific Press: Singapore, 2007; pp. 17–56. [Google Scholar]
- Kolchanova, S.G.; Grinko, A.A.; Zinovieva, Y.A.; Sokolov, S.Y.; Ustyusganin, S.S.; Shur, M.L.; Blyakhman, F.A. The regional elastic properties analysis of myocardium based on echocardiographic 3-D reconstruction of the left ventricle. Ultrasound Med. Biol. 2004, 30, 311–320. [Google Scholar] [CrossRef]
- Corrado, D.; Pelliccia, A.; Bjørnstad, H.H.; Vanhees, L.; Biffi, A.; Borjesson, M.; Panhuyzen-Goedkoop, N.; Deligiannis, A.; Solberg, E.; Dugmore, D.; et al. Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: Proposal for a common European protocol. Consensus Statement of the Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur. Heart J. 2005, 26, 516–524. [Google Scholar]
- Maron, B.J.; Friedman, R.A.; Kligfield, P.; Levine, B.D.; Viskin, S.; Chaitman, B.R.; Okin, P.M.; Saul, J.P.; Salberg, L.; Van Hare, G.F.; et al. American Heart Association Council on Clinical Cardiology, Advocacy Coordinating Committee, Council on Cardiovascular Disease in the Young, Council on Cardiovascular Surgery and Anesthesia, Council on Epidemiology and Prevention, Council on Functional Genomics and Translational Biology, Council on Quality of Care and Outcomes Research, and American College of Cardiology. Assessment of the 12-lead ECG as a screening test for detection of cardiovascular disease in healthy general populations of young people (12–25 Years of Age): A scientific statement from the American Heart Association and the American College of Cardiology. Circulation 2014, 130, 1303–1334. [Google Scholar]
- Sharma, S.; Drezner, J.A.; Baggish, A.; Papadakis, M.; Wilson, M.G.; Prutkin, J.M.; La Gerche, A.; Ackerman, M.J.; Borjesson, M.; Salerno, J.; et al. International recommendations for electrocardiographic interpretation in athletes. Eur. Heart J. 2018, 39, 1466–1480. [Google Scholar] [CrossRef]
- Zorzi, A.; Calore, C.; Vio, R.; Pelliccia, A.; Corrado, D. Accuracy of the ECG for differential diagnosis between hypertrophic cardiomyopathy and athlete’s heart: Comparison between the European Society of Cardiology (2010) and International (2017) criteria. Br. J. Sports Med. 2018, 52, 667–673. [Google Scholar] [CrossRef]
- Cheitlin, M.D.; Alpert, J.S.; Armstrong, W.F.; Aurigemma, G.P.; Beller, G.A.; Bierman, F.Z.; Davidson, T.W.; Davis, J.L.; Douglas, P.S.; Gillam, L.D. ACC/AHA Guidelines for the Clinical Application of Echocardiography. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Clinical Application of Echocardiography). Developed in collaboration with the American Society of Echocardiography. Circulation 1997, 95, 1686–1744. [Google Scholar]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, S.; Alhadidi, T.; Chabchoub, S.; Salah, R.B. Impedance cardiography: Recent applications and developments. Biomed. Res. 2018, 29, 3542–3552. [Google Scholar] [CrossRef]
- Gibbons, R.J.; Balady, G.J.; Bricker, J.T.; Chaitman, B.R.; Fletcher, G.F.; Froelicher, V.F.; Mark, D.B.; McCallister, B.D.; Mooss, A.N.; O’Reilly, M.G.; et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Committee to Update the 1997 Exercise Testing Guidelines. ACC/AHA 2002 guideline update for exercise testing: Summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J. Am. Coll. Cardiol. 2002, 40, 1531–1540. [Google Scholar] [PubMed]
- Wasserman, K.; Hansen, J.E.; Sue, D.Y.; Stringer, W.W.; Whipp, B.J. Measurements during integrative cardiopulmonary exercise testing. In Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications, 5th ed.; Wasserman, K., Hansen, J.E., Sue, D.Y., Stringer, W.W., Sietsema, K.E., Sun, X.-G., Whipp, B.J., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; pp. 71–106. [Google Scholar]
- Bruce, R.A.; Kusumi, F.; Hosmer, D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am. Heart J. 1973, 85, 546–562. [Google Scholar] [CrossRef]
- Astorino, T.A.; Willey, J.; Kinnahan, J.; Larsson, S.M.; Welch, H.; Dalleck, L.C. Elucidating determinants of the plateau in oxygen consumption at VO2max. Br. J. Sports Med. 2005, 39, 655–660. [Google Scholar] [CrossRef]
- Howley, E.T.; Basset, D.R., Jr.; Welch, H.G. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sports Exerc. 1995, 27, 1292–1301. [Google Scholar] [CrossRef]
- Lee, J.M.; Bassett, D.R.; Thompson, D.L.; Fitzhugh, E.C. Validation of the Cosmed Fitmate for prediction of maximal oxygen consumption. J. Strength. Cond. Res. 2011, 25, 2573–2579. [Google Scholar] [CrossRef]
- Glass, S.; Gregory, B. ACSM’s Metabolic Calculations Handbook; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2007; pp. 25–74. [Google Scholar]
- Koutlianos, N.; Dimitros, E.; Metaxas, T.; Cansiz, M.; Deligiannis, A.; Kouidi, E. Indirect estimation of VO2max in athletes by ACSM’s equation: Valid or not? Hippokratia 2013, 17, 136–140. [Google Scholar] [PubMed]
- George, J.D.; Paul, S.L.; Hyde, A.; Bradshaw, D.I.; Vehrs, P.R.; Hager, R.L.; Yanowitz, F.G. Prediction of maximum oxygen uptake using both exercise and non-exercise data. Meas. Phys. Educ. Exerc. Sci. 2009, 13, 1–12. [Google Scholar] [CrossRef]
- Gibson, T.M.; Harrison, M.H.; Wellicone, R.M. Evaluation of a treadmill work test. Br. J. Sports Med. 1979, 13, 6–11. [Google Scholar] [CrossRef][Green Version]
- Mekhdieva, K.; Zakharova, A.; Timokhina, V.; Usanina, S.; Blyakhman, F. Evaluation of Physical Performance in Athletes with Health Conditions. Hsm 2024, 24, 189–195. [Google Scholar]
- Yang, T.; Fan, X.; Fan, Y.; Song, W.; Liu, X.; Wang, J.; Chen, X. Co-Occurrence of Sensorineural Hearing Loss and Congenital Heart Disease: Etiologies and Management. Laryngoscope 2024, 134, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Kolli, A.; Seiler, K.; Kamdar, N.; De Lott, L.B.; Peterson, M.D.; Meade, M.A.; Ehrlich, J.R. Longitudinal Associations Between Vision Impairment and the Incidence of Neuropsychiatric, Musculoskeletal, and Cardiometabolic Chronic Diseases. Am. J. Ophthalmol. 2022, 235, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Flammer, J.; Konieczka, K.; Bruno, R.M.; Virdis, A.; Flammer, A.J.; Taddei, S. The eye and the heart. Eur. Heart J. 2013, 34, 1270–1278. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vinokurova, K.; Zakharova, A.; Zinovieva, Y.; Epifanov, A.; Galdobina, A.; Sharkova, E.; Blyakhman, F. Cardiovascular Functioning Features in Individuals with Connective Tissue Dysplasia Engaged in Sports for the Disabled. Sports 2026, 14, 69. https://doi.org/10.3390/sports14020069
Vinokurova K, Zakharova A, Zinovieva Y, Epifanov A, Galdobina A, Sharkova E, Blyakhman F. Cardiovascular Functioning Features in Individuals with Connective Tissue Dysplasia Engaged in Sports for the Disabled. Sports. 2026; 14(2):69. https://doi.org/10.3390/sports14020069
Chicago/Turabian StyleVinokurova, Kamiliia, Anna Zakharova, Yulia Zinovieva, Arseniy Epifanov, Anna Galdobina, Ekaterina Sharkova, and Felix Blyakhman. 2026. "Cardiovascular Functioning Features in Individuals with Connective Tissue Dysplasia Engaged in Sports for the Disabled" Sports 14, no. 2: 69. https://doi.org/10.3390/sports14020069
APA StyleVinokurova, K., Zakharova, A., Zinovieva, Y., Epifanov, A., Galdobina, A., Sharkova, E., & Blyakhman, F. (2026). Cardiovascular Functioning Features in Individuals with Connective Tissue Dysplasia Engaged in Sports for the Disabled. Sports, 14(2), 69. https://doi.org/10.3390/sports14020069

