Two-Week Recovery Strategies to Enhance Performance Readiness in Martial Arts Athletes: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments and Procedures
2.2.1. RESTQ
2.2.2. DT
2.2.3. CMJ
2.2.4. Isokinetic Knee Strength (Flexion and Extension)
2.3. Recovery Interventions
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ojeda-Aravena, A.; Lima Kons, R.; Báez-San Martín, E.; Azócar-Gallardo, J.; Dopico-Calvo, X. Achieving competitive excellence in taekwondo: The relationship between unloaded countermovement jump kinetic variables and sport-specific motor tasks. Biomechanics 2025, 5, 70. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, A.; Alacid, F.; Cuestas-Calero, B.J.; Matłosz, P.; López-Plaza, D. Physical and Morphological Differences between Young Elite Taekwondo and Karate Players. Appl. Sci. 2023, 13, 10109. [Google Scholar] [CrossRef]
- Menescardi, C.; Falco, C.; Ros, C.; Morales-Sánchez, V.; Hernández-Mendo, A. Technical-tactical actions used to score in taekwondo: An analysis of two medalists in two Olympic championships. Front. Psychol. 2019, 10, 2708. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, D.; Climstein, M.; Whitting, J.; Del Vecchio, L. Impact force and velocities for kicking strikes in combat sports: A literature review. Sports 2024, 12, 74. [Google Scholar] [CrossRef]
- Bridge, C.A.; Ferreira da Silva Santos, J.; Chaabène, H.; Pieter, W.; Franchini, E. Physical and physiological profiles of taekwondo athletes. Sports Med. 2014, 44, 713–733. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, G.; Zhong, Y.; Nassis, G.P.; Chen, Z.; Li, Y. Effects of different work–rest durations on physiological, neuromuscular, and perceived exertion responses during taekwondo-specific high-intensity interval training. J. Exerc. Sci. Fit. 2025, 23, 141–147. [Google Scholar] [CrossRef]
- Vasconcelos, B.B.; Protzen, G.V.; Galliano, L.M.; Kirk, C.; Del Vecchio, F.B. Effects of high-intensity interval training in combat sports: A systematic review with meta-analysis. J. Strength Cond. Res. 2020, 34, 888–900. [Google Scholar] [CrossRef]
- da Silva Santos, J.F.; Loturco, I.; Franchini, E. Relationship between frequency speed of kick test performance, optimal load, and anthropometric variables in black-belt taekwondo athletes. Ido Mov. Cult. J. Martial Arts Anthropol. 2018, 18, 39–44. [Google Scholar]
- Ojeda-Aravena, A.; Herrera-Valenzuela, T.; Valdés-Badilla, P.; Martín, E.B.-S.; Zapata-Bastías, J.; Aedo-Muñoz, E.; García-García, J.M. Interrelationship between specific high-intensity intermittent efforts ability, aerobic capacity, and slow stretch-shortening cycle utilization in taekwondo athletes. Isokinet. Exerc. Sci. 2022, 30, 241–250. [Google Scholar] [CrossRef]
- Peake, J.M.; Suzuki, K.; Hordern, M.; Wilson, G.; Nosaka, K.; Coombes, J.S. Plasma cytokine changes in relation to exercise intensity and muscle damage. Eur. J. Appl. Physiol. 2005, 95, 514–521. [Google Scholar] [CrossRef]
- Kons, R.L.; Orssatto, L.B.R.; Detanico, D. Acute performance responses during repeated matches in combat sports: A systematic review. J. Sci. Med. Sport 2020, 23, 512–518. [Google Scholar] [CrossRef]
- Bishop, P.A.; Jones, E.; Woods, A.K. Recovery from training: A brief review. J. Strength Cond. Res. 2008, 22, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Chaabene, H.; Negra, Y.; Bouguezzi, R.; Capranica, L.; Franchini, E.; Prieske, O.; Hbacha, H.; Granacher, U. Tests for the assessment of sport-specific performance in Olympic combat sports: A systematic review with practical recommendations. Front. Physiol. 2018, 9, 386. [Google Scholar] [CrossRef] [PubMed]
- Kellmann, M.; Bertollo, M.; Bosquet, L.; Brink, M.; Coutts, A.J.; Duffield, R.; Erlacher, D.; Halson, S.L.; Hecksteden, A.; Heidari, J.; et al. Recovery and performance in sport: Consensus statement. Int. J. Sports Physiol. Perform. 2018, 13, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rodríguez, A.; López-Plaza, D.; Nadal-Nicolás, Y.; Sánchez-Sánchez, J.; Leyva-Vela, B.; Cuestas-Calero, B.J.; Ramos-Campo, D.J.; Andreu-Caravaca, L.; Rubio-Arias, J.Á. Impact of recovery strategies on physiological and performance parameters in karate athletes: A randomized crossover study. Sport Sci. Health 2025, 21, 2993–3005. [Google Scholar] [CrossRef]
- Dakić, M.; Toskić, L.; Ilić, V.; Đurić, S.; Dopsaj, M.; Šimenko, J. The Effects of Massage Therapy on Sport and Exercise Performance: A Systematic Review. Sports 2023, 11, 110. [Google Scholar] [CrossRef]
- Siqueira, A.F.; Vieira, A.; Bottaro, M.; Ferreira-Júnior, J.B.; Nóbrega, O.T.; de Souza, V.C.; Marqueti, R.C.; Babault, N.; Durigan, J.L.Q. Multiple cold-water immersions attenuate muscle damage but not alter systemic inflammation and muscle function recovery: A parallel randomized controlled trial. Sci. Rep. 2018, 8, 10961. [Google Scholar] [CrossRef]
- Jaworska, J.; Laskowski, R.; Ziemann, E.; Zuczek, K.; Lombardi, G.; Antosiewicz, J.; Zurek, P. The specific judo training program combined with whole-body cryostimulation induced an increase of serum concentrations of growth factors and changes in amino acid profile in professional judokas. Front. Physiol. 2021, 12, 627657. [Google Scholar] [CrossRef]
- Yarar, H.; Gök, Ü.; Dağtekin, A.; Saçan, Y.; Eroğlu, H. Effects of different recovery methods on anaerobic performance in combat sports athletes. Acta Gymnica 2021, 51, e2021.017. [Google Scholar] [CrossRef]
- Tabben, M.; Ihsan, M.; Ghoul, N.; Coquart, J.; Chaouachi, A.; Chaabene, H.; Tourny, C.; Chamari, K. Cold water immersion enhanced athletes’ wellness and 10-m short sprint performance 24 h after a simulated mixed martial arts combat. Front. Physiol. 2018, 9, 1542. [Google Scholar] [CrossRef]
- Lindsay, A.; Carr, S.; Cross, S.; Petersen, C.; Lewis, J.G.; Gieseg, S.P. The physiological response to cold-water immersion following a mixed martial arts training session. Appl. Physiol. Nutr. Metab. 2017, 42, 529–536. [Google Scholar] [CrossRef]
- Fuchs, C.J.; Kouw, I.W.K.; Churchward-Venne, T.A.; Smeets, J.S.J.; Senden, J.M.; van Lichtenbelt, W.D.V.M.; Verdijk, L.B.; van Loon, L.J.C. Postexercise cooling impairs muscle protein synthesis rates in recreational athletes. J. Physiol. 2020, 598, 755–772. [Google Scholar] [CrossRef] [PubMed]
- Mathunjwa, M.L.; Mahlangu, S.; Haddad, M. Evaluating the impact of massage therapy on performance and well-being in taekwondo practitioners: A systematic review. Int. J. Environ. Res. Public Health 2025, 22, 742. [Google Scholar] [CrossRef] [PubMed]
- Sykaras, E.; Mylonas, A.; Malliaropoulos, N.; Zakas, A.; Papacostas, E.M. Manual massage effect on knee extensor peak torque during short-term intense concentric–eccentric isokinetic exercise in female elite athletes. Isokinet. Exerc. Sci. 2003, 11, 153–157. [Google Scholar] [CrossRef]
- Su, H.; Chang, N.J.; Wu, W.L.; Guo, L.Y.; Chu, I.H. Acute effects of foam rolling, static stretching, and dynamic stretching during warm-ups on muscular flexibility and strength in young adults. J. Sport Rehabil. 2017, 26, 469–477. [Google Scholar] [CrossRef]
- Bouzigon, R.; Ravier, G.; Dugue, B.; Grappe, F. Thermal sensations during a partial-body cryostimulation exposure in elite basketball players. J. Hum. Kinet. 2018, 62, 55–63. [Google Scholar] [CrossRef]
- Góra, T.; Mosler, D.; Langfort, J.; Wąsik, J. Differences in impact force between side kicks and turning kicks in male practitioners of taekwon-do: Case studies. Appl. Sci. 2024, 14, 5876. [Google Scholar] [CrossRef]
- Iversen, V.V.; Hafstad, A.B.; Falco, C.; Kristoffersen, M. Physiological profile of the Norwegian taekwondo (ITF) national team. Front. Physiol. 2025, 16, 1661237. [Google Scholar] [CrossRef]
- Boobani, B.; Grants, J.; Litwiniuk, A.; Boge, I.; Glaskova-Kuzmina, T. Effect of walking in nature on stress levels and performance of taekwondo athletes in the competition period. J. Kinesiol. Exerc. Sci. 2024, 34, 17–27. [Google Scholar] [CrossRef]
- Boobani, B.; Grants, J.; Boge, I.; Glaskova-Kuzmina, T.; Bula-Biteniece, I.; Jagiello, W.; Litwiniuk, A. Effect of outdoor recreation activity on mental toughness of taekwondo athletes in the competition period. Arch. Budo Sci. Martial Arts Extreme Sports 2023, 19, 113–121. [Google Scholar]
- Boobani, B.; Grants, J.; Glaskova-Kuzmina, T.; Žīdens, J.; Litwiniuk, A. Effect of green exercise on stress level, mental toughness, and performance of taekwondo athletes. Arch. Budo 2024, 20, 29–40. [Google Scholar]
- Ghoul, N.; Tabben, M.; Miarka, B.; Tourny, C.; Chamari, K.; Coquart, J. Mixed martial arts induces significant fatigue and muscle damage up to 24 h post-combat. J. Strength Cond. Res. 2019, 33, 1570–1579. [Google Scholar] [CrossRef] [PubMed]
- Trybulski, R.; Kużdżał, A.; Stanula, A.; Klich, S.; Clemente, F.M.; Kawczyński, A.; Fernández-de-las-Peñas, C. Biomechanical profile after dry needling in mixed martial arts. Int. J. Sports Med. 2024, 45, 968–979. [Google Scholar] [CrossRef] [PubMed]
- Trybulski, R.; Stanula, A.; Vovkanych, A.; Muracki, J.; Wang, H.K.; Kużdżał, A. Author correction: Immediate effect of ice and dry massage during rest breaks on recovery in MMA fighters: A randomized crossover clinical trial study. Sci. Rep. 2025, 15, 14478. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Kellmann, M.; Kallus, K.W. (Eds.) The Recovery-Stress Questionnaires: A User Manual, 1st ed.; Routledge: London, UK, 2024. [Google Scholar] [CrossRef]
- Boobani, B.; Grants, J.; Vazne, Ž.; Volgemute, K.; Astafičevs, A.; Leja, R.; Brūvere, D.D.; Līcis, R.; Saulīte, S.; Litwiniuk, A. Recovery-Stress Questionnaire-76 (RESTQ-76) for Latvian Athletes; Rīga Stradiņš University Institutional Repository Dataverse: Riga, Latvia, 2025. [Google Scholar] [CrossRef]
- Boobani, B.; Grants, J.; Vazne, Ž.; Volgemute, K.; Astafičevs, A.; Leja, R.; Brūvere, D.D.; Licis, R.; Saulite, S.; Litwiniuk, A. Preliminary Latvian RESTQ-76 for Athletes: A Tool for Recovery–Stress Monitoring and Health Promotion. Sci 2026, 8, 6. [Google Scholar] [CrossRef]
- Teteris, L.E.; Saulīte, S.; Līcis, R.; Greve, M.; Boobani, B. Application of the Vienna Test System to measure training-induced changes in choice reaction time in U20 fencers: A 12-week training program pilot study. Sports 2025, 13, 400. [Google Scholar] [CrossRef]
- Schuhfried, G. Determination Test (DT): Test Manual; Version 46; Revision 1; SCHUHFRIED GmbH: Moedling, Austria, 2020; Available online: https://www.schuhfried.com (accessed on 5 January 2026).
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef]
- Dong, M.; Kim, B.; Lee, J.; Choi, Y.; Shi, P.; Zhang, G. Isokinetic muscle function, dynamic balance, and injury risk in dominant and non-dominant lower extremities of adolescent taekwondo athletes. Front. Sports Act. Living 2025, 7, 1599516. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Bizzini, M.; Desbrosses, K.; Babault, N.; Munzinger, U. Reliability of knee extension and flexion measurements using the Con-Trex isokinetic dynamometer. Clin. Physiol. Funct. Imaging 2007, 27, 346–353. [Google Scholar] [CrossRef]
- Park, E.-H.; Choi, S.-W.; Yang, Y.-K. Cold-water immersion promotes antioxidant enzyme activation in elite taekwondo athletes. Appl. Sci. 2021, 11, 2855. [Google Scholar] [CrossRef]
- Hohenauer, E.; Costello, J.T.; Deliens, T.; Clarys, P.; Stoop, R.; Clijsen, R. Partial-body cryotherapy (−135 °C) and cold-water immersion (10 °C) after muscle damage in females. Scand. J. Med. Sci. Sports 2020, 30, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Kiyono, R.; Onuma, R.; Yasaka, K.; Sato, S.; Yahata, K.; Nakamura, M. Effects of a 5-week foam rolling intervention on range of motion and muscle stiffness. J. Strength Cond. Res. 2022, 36, 1890–1895. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Junior, J.B.; Bottaro, M.; Vieira, A.; Siqueira, A.F.; Vieira, C.A.; Durigan, J.L.; Cadore, E.L.; Coelho, L.G.; Simões, H.G.; Bemben, M.G. One session of partial-body cryotherapy (−110 °C) improves muscle damage recovery. Scand. J. Med. Sci. Sports 2015, 25, e524–e530. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef]
- Becker-Larsen, A.; Henriksen, K.; Stambulova, N.B. “Organizing for Excellence”: Stress–Recovery States in the Danish National Orienteering Team During a Training Camp and the 2015 World Championship; University of Southern Denmark: Odense, Denmark, 2017. [Google Scholar]
- Trybulski, R.; Roczniok, R.; Olaniszyn, G.; Svyshch, Y.; Vovkanych, A.; Wilk, M. Sports massage and blood flow restriction combined with cold therapy accelerate muscle recovery after fatigue in mixed martial arts athletes: A randomized controlled trial. J. Funct. Morphol. Kinesiol. 2025, 10, 194. [Google Scholar] [CrossRef]
- Elbe, A.-M.; Kellmann, M. Recovery following training and competition. In Psychology of Sport Training: Perspectives on Sport and Exercise Psychology, 2nd ed.; Blumenstein, B., Lidor, R., Tenenbaum, G., Eds.; Meyer & Meyer: Aachen, Germany, 2007; pp. 162–185. [Google Scholar]
- Baj-Korpak, J.; Stelmach, M.J.; Zaworski, K.; Lichograj, P.; Wochna, M. Assessment of motor abilities and physical fitness in youth in the context of talent identification—OSF test. Int. J. Environ. Res. Public Health 2022, 19, 14303. [Google Scholar] [CrossRef]
- Enander, A. Effects of moderate cold on performance of psychomotor and cognitive tasks. Ergonomics 1987, 30, 1431–1445. [Google Scholar] [CrossRef]
- Jones, D.M.; Bailey, S.P.; Roelands, B.; Buono, M.J.; Meeusen, R. Cold acclimation and cognitive performance: A review. Auton. Neurosci. 2017, 208, 36–42. [Google Scholar] [CrossRef]
- Bibić, E.; Barišić, V.; Katanić, B.; Chernozub, A.; Trajković, N. Acute effects of foam rolling and stretching on physical performance and self-perceived fatigue in young football players. J. Funct. Morphol. Kinesiol. 2025, 10, 36. [Google Scholar] [CrossRef]
- Poppendieck, W.; Wegmann, M.; Ferrauti, A.; Kellmann, M.; Pfeiffer, M.; Meyer, T. Massage and performance recovery: A meta-analytical review. Sports Med. 2016, 46, 183–204. [Google Scholar] [CrossRef]
- Feng, C.; Chen, P.; Zhang, W.; Luo, B.; Du, G.; Liao, T.; Zheng, C. An evidence-based approach to selecting post-exercise cryostimulation techniques for improving exercise performance and fatigue recovery: A systematic review and meta-analysis. Heliyon 2024, 10, e32196. [Google Scholar] [CrossRef]
- Boobani, B.; Grants, J.; Saulīte, S.; Jakubovskis, G.; Zuša, A.; Bernāns, E.; Vazne, Ž.; Volgemute, K.; Stromberga, M.; Litwiniuk, A. Recovery Strategies to Enhance the Performance of Latvian Martial Arts Athletes; Rīga Stradiņš University Institutional Repository Dataverse: Riga, Latvia, 2025. [Google Scholar] [CrossRef]

| Group (n = 15) | |||
|---|---|---|---|
| Cryotherapy n = 5 | Foam Rolling n = 5 | Control n = 5 | |
| m ± SD | |||
| Age (years) | 16.6 ± 3.57 | 15.8 ± 2.95 | 16.4 ± 2.6 |
| Height (cm) | 169.7 ± 5.19 | 171.6 ± 6.72 | 171.1 ± 6.15 |
| Weight (kg) | 63.04 ± 4.72 | 66.02 ± 10.66 | 62.82 ± 6.91 |
| Body mass index (kg/m2) | 21.88 ± 1.31 | 22.31 ± 2.44 | 21.43 ± 1.73 |
| Variable | Test Phase | Cryotherapy n = 5 m ± SD 95% CI Lower, Upper | Foam Rolling n = 5 m ± SD 95% CI Lower, Upper | Control n = 5 m ± SD 95% CI Lower, Upper |
|---|---|---|---|---|
| RESTQ total stress | Pre | 2.34 ± 1.13 (0.93 ± 3.75) | 2.43 ± 0.95 (1.25 ± 3.61) | 2.63 ± 1.11 (1.25 ± 4.01) |
| Post | 2.38 ± 0.88 (1.28 ± 3.48) | 2.14 ± 0.77 (1.17 ± 3.10) | 2.05 ± 0.78 (1.07 ± 3.02) | |
| RESTQ total recovery | Pre | 3.24 ± 0.70 (2.37 ± 4.11) | 3.55 ± 0.78 (2.58 ± 4.51) | 3.11 ± 0.63 (2.32 ± 3.89) |
| Post | 2.91 ± 0.77 (1.95 ± 3.87) | 3.21 ± 0.50 (2.58 ± 3.84) | 3.75 ± 1.13 (2.34 ± 5.16) | |
| DT | Pre | 233.80 ± 41.61 (182.13 ± 285.47) | 239.80 ± 33.53 (198.15 ± 281.44) | 249 ± 21.77 (221.96 ± 276.03) |
| Post | 293.20 ± 45.61 (236.56 ± 349.83) | 251.80 ± 73.81 (160.15 ± 343.45) | 270.40 ± 65.26 (189.36 ± 351.43 | |
| CMJ (cm) | Pre | 27.98 ± 5.11 (21.62 ± 34.33) | 24.86 ± 3.17 (20.91 ± 28.80) | 26.22 ± 7.97 (16.31 ± 36.12) |
| Post | 28.96 ± 5.89 (21.63 ± 36.28) | 26.60 ± 4.35 (21.19 ± 32) | 27.84 ± 8.78 (16.92 ± 38.75) | |
| Isokinetic knee flex (Nm) | Pre | 107.24 ± 40.44 (57.02 ± 157.45) | 89.08 ± 35.39 (45.13 ± 133.03) | 101.64 ± 34.32 (59.01 ± 144.26) |
| Post | 86.28 ± 18.75 (62.99 ± 109.56) | 94.64 ± 35.30 (50.81 ± 138.47) | 103.30 ± 39.08 (54.76 ± 151.83) | |
| Isokinetic knee ext (Nm) | Pre | 159.84 ± 54.60 (92.03 ± 227.64) | 143.94 ± 59.10 (70.55 ± 217.32) | 183.56 ± 47.75 (124.26 ± 242.85) |
| Post | 133.08 ± 27.57 (98.84 ± 167.31) | 151.38 ± 65.91 (69.53 ± 233.22) | 158.48 ± 35.77 (114.06 ± 202.89) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Boobani, B.; Grants, J.; Saulite, S.; Jakubovskis, G.; Zusa, A.; Bernans, E.; Vazne, Ž.; Volgemute, K.; Stromberga, M.; Litwiniuk, A. Two-Week Recovery Strategies to Enhance Performance Readiness in Martial Arts Athletes: A Pilot Study. Sports 2026, 14, 46. https://doi.org/10.3390/sports14020046
Boobani B, Grants J, Saulite S, Jakubovskis G, Zusa A, Bernans E, Vazne Ž, Volgemute K, Stromberga M, Litwiniuk A. Two-Week Recovery Strategies to Enhance Performance Readiness in Martial Arts Athletes: A Pilot Study. Sports. 2026; 14(2):46. https://doi.org/10.3390/sports14020046
Chicago/Turabian StyleBoobani, Behnam, Juris Grants, Sergejs Saulite, Germans Jakubovskis, Anna Zusa, Edgars Bernans, Žermēna Vazne, Katrina Volgemute, Marta Stromberga, and Artur Litwiniuk. 2026. "Two-Week Recovery Strategies to Enhance Performance Readiness in Martial Arts Athletes: A Pilot Study" Sports 14, no. 2: 46. https://doi.org/10.3390/sports14020046
APA StyleBoobani, B., Grants, J., Saulite, S., Jakubovskis, G., Zusa, A., Bernans, E., Vazne, Ž., Volgemute, K., Stromberga, M., & Litwiniuk, A. (2026). Two-Week Recovery Strategies to Enhance Performance Readiness in Martial Arts Athletes: A Pilot Study. Sports, 14(2), 46. https://doi.org/10.3390/sports14020046

