Effects of a 6-Week Intermittent Hypoxia–Hyperoxia Exposure Program on Blood Pressure, Respiratory Function, Cardiac Autonomic Nervous Activity and CRP Levels in Older Adults: A Randomized Clinical Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Intervention
2.3.1. Intermittent Hypoxic–Hyperoxic Exposure
2.3.2. Sham Intermittent Hypoxic–Hyperoxic Exposure
2.4. Outcomes
2.4.1. Heart Rate Variability
2.4.2. Arterial Blood Pressure
2.4.3. Respiratory Muscle Strength
2.4.4. Pulmonary Function
2.4.5. C Reactive Protein
2.4.6. Arterial Oxygen Saturation
2.5. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Changes in Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| EG | Experimental Group |
| CG | Control Group |
| IHHE | Intermittent Hypoxic–Hyperoxic Exposure |
| HRV | Heart Rate Variability |
| MIP | Maximal Inspiratory Pressure |
| FVC | Forced Vital capacity |
| FEV1 | Forced Expiratory Volume in One Second |
| CRP | C-Reactive Protein |
| SBP | Systolic Blood Pressure |
| DBP | Diastolic Blood Pressure |
| SpO2 | Arterial Oxygen Saturation |
References
- Greco, A.; Paroni, G.; Seripa, D.; Addante, F.; Dagostino, M.P.; Aucella, F. Frailty, disability and physical exercise in the aging process and in chronic kidney disease. Kidney Blood Press. Res. 2014, 39, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, B.; Morabito, B.; Simonelli, M. Ageing of the Diaphragm Muscle. Cureus 2020, 12, e6645. [Google Scholar] [CrossRef] [PubMed]
- Flynn, M.G.; Markofski, M.M.; Carrillo, A.E. Elevated Inflammatory Status and Increased Risk of Chronic Disease in Chronological Aging: Inflamm-aging or Inflamm-inactivity? Aging Dis. 2019, 10, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Franse, C.B.; Zhang, X.; van Grieken, A.; Rietjens, J.; Alhambra-Borras, T.; Dura, E.; Garces-Ferrer, J.; van Staveren, R.; Rentoumis, T.; Markaki, A.; et al. A coordinated preventive care approach for healthy ageing in five European cities: A mixed methods study of process evaluation components. J. Adv. Nurs. 2019, 75, 3689–3701. [Google Scholar] [CrossRef]
- Raberin, A.; Burtscher, J.; Burtscher, M.; Millet, G.P. Hypoxia and the Aging Cardiovascular System. Aging Dis. 2023, 14, 2051–2070. [Google Scholar] [CrossRef]
- Behrendt, T.; Altorjay, A.C.; Bielitzki, R.; Behrens, M.; Glazachev, O.S.; Schega, L. Influence of acute and chronic intermittent hypoxic-hyperoxic exposure prior to aerobic exercise on cardiovascular risk factors in geriatric patients-a randomized controlled trial. Front. Physiol. 2022, 13, 1043536. [Google Scholar] [CrossRef]
- Burtscher, J.; Mallet, R.T.; Pialoux, V.; Millet, G.P.; Burtscher, M. Adaptive Responses to Hypoxia and/or Hyperoxia in Humans. Antioxid. Redox. Signal. 2022, 37, 887–912. [Google Scholar] [CrossRef]
- Navarrete-Opazo, A.; Mitchell, G.S. Therapeutic potential of intermittent hypoxia: A matter of dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R1181–R1197. [Google Scholar] [CrossRef]
- Wojan, F.; Stray-Gundersen, S.; Massoudian, S.D.; Lalande, S. Brief exposure to intermittent hypoxia increases erythropoietin levels in older adults. J. Appl. Physiol. 2023, 135, 88–93. [Google Scholar] [CrossRef]
- Timon, R.; Martinez-Guardado, I.; Brocherie, F. Effects of Intermittent Normobaric Hypoxia on Health-Related Outcomes in Healthy Older Adults: A Systematic Review. Sports Med. Open 2023, 9, 19. [Google Scholar] [CrossRef]
- Afina, A.B.; Oleg, S.G.; Alexander, A.B.; Ines, D.; Alexander Yu, S.; Nikita, V.V.; Denis, S.T.; Daria, G.G.; Zhang, Y.; Chavdar, S.P.; et al. The Effects of Intermittent Hypoxic-Hyperoxic Exposures on Lipid Profile and Inflammation in Patients with Metabolic Syndrome. Front. Cardiovasc. Med. 2021, 8, 700826. [Google Scholar] [CrossRef] [PubMed]
- Bestavashvili, A.; Glazachev, O.; Ibragimova, S.; Suvorov, A.; Bestavasvili, A.; Ibraimov, S.; Zhang, X.; Zhang, Y.; Pavlov, C.; Syrkina, E.; et al. Impact of Hypoxia-Hyperoxia Exposures on Cardiometabolic Risk Factors and TMAO Levels in Patients with Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 14498. [Google Scholar] [CrossRef] [PubMed]
- Arantes, F.S.; Rosa Oliveira, V.; Leao, A.K.M.; Afonso, J.P.R.; Fonseca, A.L.; Fonseca, D.R.P.; Mello, D.; Costa, I.P.; Oliveira, L.V.F.; da Palma, R.K. Heart rate variability: A biomarker of frailty in older adults? Front. Med. 2022, 9, 1008970. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Jung, W.S.; Hong, K.; Kim, Y.Y.; Kim, S.W.; Park, H.Y. Effects of Moderate Combined Resistance- and Aerobic-Exercise for 12 Weeks on Body Composition, Cardiometabolic Risk Factors, Blood Pressure, Arterial Stiffness, and Physical Functions, among Obese Older Men: A Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 7233. [Google Scholar] [CrossRef]
- Laveneziana, P.; Albuquerque, A.; Aliverti, A.; Babb, T.; Barreiro, E.; Dres, M.; Dube, B.P.; Fauroux, B.; Gea, J.; Guenette, J.A.; et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur. Respir. J. 2019, 53, 1801214. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Timon, R.; Gonzalez-Custodio, A.; Vasquez-Bonilla, A.; Olcina, G.; Leal, A. Intermittent Hypoxia as a Therapeutic Tool to Improve Health Parameters in Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 5339. [Google Scholar] [CrossRef]
- Placidi, G.; Cornacchia, M.; Polese, G.; Zanolla, L.; Assael, B.M.; Braggion, C. Chest physiotherapy with positive airway pressure: A pilot study of short-term effects on sputum clearance in patients with cystic fibrosis and severe airway obstruction. Respir. Care 2006, 51, 1145–1153. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; p. 567. [Google Scholar]
- Prefaut, C.; Anselme, F.; Caillaud, C.; Masse-Biron, J. Exercise-induced hypoxemia in older athletes. J. Appl. Physiol. 1994, 76, 120–126. [Google Scholar] [CrossRef]
- Kinkead, R.; Bach, K.B.; Johnson, S.M.; Hodgeman, B.A.; Mitchell, G.S. Plasticity in respiratory motor control: Intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2001, 130, 207–218. [Google Scholar] [CrossRef]
- Gonzalez-Rothi, E.J.; Lee, K.Z.; Dale, E.A.; Reier, P.J.; Mitchell, G.S.; Fuller, D.D. Intermittent hypoxia and neurorehabilitation. J. Appl. Physiol. 2015, 119, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhao, L.; Peng, R. Hypoxia-Inducible Factor 1 and Mitochondria: An Intimate Connection. Biomolecules 2023, 13, 50. [Google Scholar] [CrossRef] [PubMed]
- Ladrinan-Maestro, A.; Sanchez-Infante, J.; Martin-Vera, D.; Sanchez-Sierra, A. Influence of an inspiratory muscle fatigue protocol on healthy youths on respiratory muscle strength and heart rate variability. A randomized controlled trial. Front. Physiol. 2024, 15, 1457019. [Google Scholar] [CrossRef] [PubMed]
- HajGhanbari, B.; Yamabayashi, C.; Buna, T.R.; Coelho, J.D.; Freedman, K.D.; Morton, T.A.; Palmer, S.A.; Toy, M.A.; Walsh, C.; Sheel, A.W.; et al. Effects of respiratory muscle training on performance in athletes: A systematic review with meta-analyses. J. Strength Cond. Res. 2013, 27, 1643–1663. [Google Scholar]
- Fernandez-Lazaro, D.; Gallego-Gallego, D.; Corchete, L.A.; Fernandez Zoppino, D.; Gonzalez-Bernal, J.J.; Garcia Gomez, B.; Mielgo-Ayuso, J. Inspiratory Muscle Training Program Using the PowerBreath®: Does It Have Ergogenic Potential for Respiratory and/or Athletic Performance? A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 6703. [Google Scholar] [CrossRef]
- Gontijo, P.L.; Lima, T.P.; Costa, T.R.; Reis, E.P.; Cardoso, F.P.; Cavalcanti Neto, F.F. Correlation of spirometry with the six-minute walk test in eutrophic and obese individuals. Rev. Assoc. Med. Bras. 2011, 57, 380–386. [Google Scholar] [CrossRef][Green Version]
- Yadav, P.; Mishra, A.K.; Kumar, A.; Gupta, A.K.; Gautam, A.K.; Singh, N.P. Study the association between spirometry based functional grading and six minute walk distance in chronic respiratory disease patients at a rural tertiary care centre of India. Ann. Afr. Med. 2023, 22, 526–531. [Google Scholar] [CrossRef]
- Zhang, P.; Downey, H.F.; Chen, S.; Shi, X. Two-week normobaric intermittent hypoxia exposures enhance oxyhemoglobin equilibrium and cardiac responses during hypoxemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R721–R730. [Google Scholar] [CrossRef]
- Prabhakar, N.R.; Semenza, G.L. Oxygen Sensing and Homeostasis. Physiology 2015, 30, 340–348. [Google Scholar] [CrossRef]
- Panza, G.S.; Puri, S.; Lin, H.S.; Badr, M.S.; Mateika, J.H. Daily Exposure to Mild Intermittent Hypoxia Reduces Blood Pressure in Male Patients with Obstructive Sleep Apnea and Hypertension. Am. J. Respir. Crit. Care Med. 2022, 205, 949–958. [Google Scholar]
- Zoccal, D.B.; Furuya, W.I.; Bassi, M.; Colombari, D.S.A.; Colombari, E. The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities. Front. Physiol. 2014, 5, 238. [Google Scholar] [CrossRef] [PubMed]
- Lizamore, C.A.; Stoner, L.; Kathiravel, Y.; Elliott, J.; Hamlin, M.J. Does intermittent hypoxic exposure enhance the cardioprotective effect of exercise in an inactive population? Front. Physiol. 2022, 13, 1005113. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, T.; Bielitzki, R.; Behrens, M.; Herold, F.; Schega, L. Effects of Intermittent Hypoxia-Hyperoxia on Performance- and Health-Related Outcomes in Humans: A Systematic Review. Sports Med. Open 2022, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Glazachev, O.S.; Kryzhanovskaya, S.Y.; Zapara, M.A.; Dudnik, E.N.; Samartseva, V.G.; Susta, D. Safety and Efficacy of Intermittent Hypoxia Conditioning as a New Rehabilitation/Secondary Prevention Strategy for Patients with Cardiovascular Diseases: A Systematic Review and Meta-analysis. Curr. Cardiol. Rev. 2021, 17, e051121193317. [Google Scholar] [CrossRef]
- Tan, H.; Lu, H.; Chen, Q.; Tong, X.; Jiang, W.; Yan, H. The Effects of Intermittent Whole-Body Hypoxic Preconditioning on Patients with Carotid Artery Stenosis. World Neurosurg. 2018, 113, e471–e479. [Google Scholar] [CrossRef]
- Lyamina, N.P.; Lyamina, S.V.; Senchiknin, V.N.; Mallet, R.T.; Downey, H.F.; Manukhina, E.B. Normobaric hypoxia conditioning reduces blood pressure and normalizes nitric oxide synthesis in patients with arterial hypertension. J. Hypertens. 2011, 29, 2265–2272. [Google Scholar] [CrossRef]
- Kayser, B.; Verges, S. Hypoxia, energy balance and obesity: From pathophysiological mechanisms to new treatment strategies. Obes. Rev. 2013, 14, 579–592. [Google Scholar] [CrossRef]
- Timon, R.; Martínez-Guardado, I.; Camacho-Cardeñosa, A.; Villa-Andrada, J.M.; Olcina, G.; Camacho-Cardeñosa, M. Effect of intermittent hypoxic conditioning on inflammatory biomarkers in older adults. Exp. Gerontol. 2021, 152, 111478. [Google Scholar] [CrossRef]
- Serebrovskaya, T.V.; Nikolsky, I.S.; Nikolska, V.V.; Mallet, R.T.; Ishchuk, V.A. Intermittent hypoxia mobilizes hematopoietic progenitors and augments cellular and humoral elements of innate immunity in adult men. High Alt. Med. Biol. 2011, 12, 243–252. [Google Scholar] [CrossRef]
- Kiers, D.; Wielockx, B.; Peters, E.; van Eijk, L.T.; Gerretsen, J.; John, A.; Janssen, E.; Groeneveld, R.; Peters, M.; Damen, L.; et al. Short-Term Hypoxia Dampens Inflammation in vivo via Enhanced Adenosine Release and Adenosine 2B Receptor Stimulation. eBioMedicine 2018, 33, 144–156. [Google Scholar] [CrossRef]


| EG (n = 10) | CG (n = 10) | p | |
|---|---|---|---|
| Sex (male/female) | 7/3 | 6/4 | |
| Age (yrs) | 71.20 ± 6.11 | 71.70 ± 5.27 | n.s |
| Weight (kg) | 70.40 ± 6.98 | 69.30 ± 6.77 | n.s |
| Height (cm) | 171.40 ± 5.78 | 169.00 ± 7.16 | n.s |
| Baseline | 6 Weeks Follow-Up | f | p | n2 | Pot | ||
|---|---|---|---|---|---|---|---|
| MIP (cmH2O) | |||||||
| EG | 66.20 ± 4.76 | 73.70 ± 5.58 ** | Group | 1.47 | 0.24 | 0.08 | 0.21 |
| CG | 66.60 ± 6.40 | 67.10 ± 6.19 # | Time | 155.68 | <0.01 | 0.90 | 1 |
| Group × Time | 119.19 | <0.01 | 0.90 | 1 | |||
| FVC (%) | |||||||
| EG | 76.13 ± 12.24 | 85.97 ± 8.67 ** | Group | 3.16 | 0.09 | 0.15 | 0.39 |
| CG | 73.68 ± 7.78 | 73.95 ± 8.25 ## | Time | 22.95 | <0.01 | 0.56 | 1 |
| Group × Time | 20.57 | <0.01 | 0.53 | 0.99 | |||
| FEV1 (%) | |||||||
| EG | 70.03 ± 15.55 | 70.03 ± 16.33 | Group | <0.01 | 0.97 | <0.01 | 0.05 |
| CG | 70.46 ± 13.27 | 69.08 ± 12.16 | Time | 0.97 | 0.34 | 0.05 | 0.15 |
| Group × Time | 0.95 | 0.34 | 0.05 | 0.15 | |||
| FEV1/FVC (%) | |||||||
| EG | 88.31 ± 8.66 | 77.55 ± 5.73 ** | Group | 2.74 | 0.12 | 0.13 | 0.35 |
| CG | 91.01 ± 15.22 | 91.35 ± 14.34 # | Time | 10.95 | <0.01 | 0.38 | 0.88 |
| Group × Time | 12.45 | <0.01 | 0.41 | 0.92 |
| Baseline | 6 Weeks Follow-Up | f | p | n2 | Pot | ||
|---|---|---|---|---|---|---|---|
| RR (ms) | |||||||
| EG | 794.12 ± 43.65 | 952.24 ± 44.31 ** | Group | 0.23 | 0.64 | 0.01 | 0.07 |
| CG | 852.63 ± 123.98 | 854.68 ± 124.09 # | Time | 136.46 | <0.01 | 0.88 | 1 |
| Group × Time | 129.57 | <0.01 | 0.88 | 1 | |||
| SDNN (ms) | |||||||
| EG | 47.52 ± 25.61 | 59.58 ± 27.78 ** | Group | 0.04 | 0.85 | <0.01 | 0.05 |
| CG | 52.17 ± 15.93 | 51.16 ± 16.87 | Time | 35.97 | <0.01 | 0.67 | 1 |
| Group × Time | 50.37 | <0.01 | 0.74 | 1 | |||
| LF/HF (n.u) | |||||||
| EG | 1.99 ± 0.67 | 0.76 ± 0.43 ** | Group | 0.79 | 0.39 | 0.04 | 0.14 |
| CG | 1.70 ± 1.01 | 1.68 ± 0.94 # | Time | 86.46 | <0.01 | 0.83 | 1 |
| Group × Time | 79.95 | <0.01 | 0.82 | 1 | |||
| RMSSD (ms) | |||||||
| EG | 27.92 ± 14.27 | 51.73 ± 11.41 ** | Group | 0.21 | 0.65 | 0.01 | 0.07 |
| CG | 37.71 ± 9.09 | 37.64 ± 9.16 ## | Time | 46.59 | <0.01 | 0.72 | 1 |
| Group × Time | 47.09 | <0.01 | 0.72 | 1 | |||
| SpO2 (%) | |||||||
| EG | 93.20 ± 1.62 | 96.10 ± 1.73 ** | Group | 0.53 | 0.48 | 0.03 | 0.11 |
| CG | 94.20 ± 2.57 | 93.90 ± 2.13 # | Time | 11.10 | <0.01 | 0.38 | 0.88 |
| Group × Time | 16.76 | <0.01 | 0.48 | 0.97 | |||
| HR (bpm) | |||||||
| EG | 74.20 ± 4.44 | 64.20 ± 3.97 ** | Group | <0.01 | 0.95 | <0.01 | 0.05 |
| CG | 69.40 ± 6.72 | 69.30 ± 6.96 | Time | 79.90 | <0.01 | 0.82 | 1 |
| Group × Time | 76.77 | <0.01 | 0.81 | 1 | |||
| SBP (mmHg) | |||||||
| EG | 135.20 ± 11.34 | 108.40 ± 9.18 ** | Group | 0.30 | 0.59 | 0.30 | 0.08 |
| CG | 125.30 ± 11.74 | 123.50 ± 11.66 ## | Time | 128.88 | <0.01 | 0.88 | 1 |
| Group × Time | 98.48 | <0.01 | 0.85 | 1 | |||
| DBP (mmHg) | |||||||
| EG | 76.80 ± 5.59 | 65.90 ± 3.31 ** | Group | 0.03 | 0.87 | <0.01 | 0.05 |
| CG | 71.60 ± 8.38 | 70.20 ± 6.63 | Time | 37.10 | <0.01 | 0.67 | 1 |
| Group × Time | 22.11 | <0.01 | 0.55 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ladriñán-Maestro, A.; Sánchez-Sierra, A.; Herrera-Gómez-Platero, M.; Sánchez-Infante, J. Effects of a 6-Week Intermittent Hypoxia–Hyperoxia Exposure Program on Blood Pressure, Respiratory Function, Cardiac Autonomic Nervous Activity and CRP Levels in Older Adults: A Randomized Clinical Trial. Sports 2026, 14, 42. https://doi.org/10.3390/sports14010042
Ladriñán-Maestro A, Sánchez-Sierra A, Herrera-Gómez-Platero M, Sánchez-Infante J. Effects of a 6-Week Intermittent Hypoxia–Hyperoxia Exposure Program on Blood Pressure, Respiratory Function, Cardiac Autonomic Nervous Activity and CRP Levels in Older Adults: A Randomized Clinical Trial. Sports. 2026; 14(1):42. https://doi.org/10.3390/sports14010042
Chicago/Turabian StyleLadriñán-Maestro, Arturo, Alberto Sánchez-Sierra, María Herrera-Gómez-Platero, and Jorge Sánchez-Infante. 2026. "Effects of a 6-Week Intermittent Hypoxia–Hyperoxia Exposure Program on Blood Pressure, Respiratory Function, Cardiac Autonomic Nervous Activity and CRP Levels in Older Adults: A Randomized Clinical Trial" Sports 14, no. 1: 42. https://doi.org/10.3390/sports14010042
APA StyleLadriñán-Maestro, A., Sánchez-Sierra, A., Herrera-Gómez-Platero, M., & Sánchez-Infante, J. (2026). Effects of a 6-Week Intermittent Hypoxia–Hyperoxia Exposure Program on Blood Pressure, Respiratory Function, Cardiac Autonomic Nervous Activity and CRP Levels in Older Adults: A Randomized Clinical Trial. Sports, 14(1), 42. https://doi.org/10.3390/sports14010042

