Associations of Scoring Accuracy with Postural Stability and Strength Measures in Archers on a Standard Archery Site
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design and Procedure
2.3. Arrow Shooting
2.4. Postural Stability
2.5. Muscle Strength
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deviterne, D.; Gauchard, G.C.; Lavisse, D.; Perrin, P.P. Cognitive processing and motor skill learning in motor-handicapped teenagers: Effects of learning method. Somat. Mot. Res. 2007, 24, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Ertan, H.; Soylu, A.R.; Korkusuz, F. Quantification the relationship between FITA scores and EMG skill indexes in archery. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2005, 15, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Barreto, J.; Atalaia, T.; Aleixo, P. Relationship Between Shooting Performance and Biomechanical Parameters Associated with Body Stability in Archery: A Systematic Review. Biomechanics 2025, 5, 48. [Google Scholar] [CrossRef]
- Spratford, W.; Campbell, R. Postural stability, clicker reaction time and bow draw force predict performance in elite recurve archery. Eur. J. Sport Sci. 2017, 17, 539–545. [Google Scholar] [CrossRef]
- Sarro, K.J.; Viana, T.C.; De Barros, R.M.L. Relationship between bow stability and postural control in recurve archery. Eur. J. Sport Sci. 2021, 21, 515–520. [Google Scholar] [CrossRef]
- Ertan, H.; Kentel, B.; Tumer, S.T.; Korkusuz, F. Activation patterns in forearm muscles during archery shooting. Hum. Mov. Sci. 2003, 22, 37–45. [Google Scholar] [CrossRef]
- Martin, P.E.; Siler, W.L.; Hoffman, D. Electromyographic analysis of bow string release in highly skilled archers. J. Sports Sci. 1990, 8, 215–221. [Google Scholar] [CrossRef]
- Muazu Musa, R.; Abdul Majeed, A.P.P.; Taha, Z.; Chang, S.W.; Ab Nasir, A.F.; Abdullah, M.R. A machine learning approach of predicting high potential archers by means of physical fitness indicators. PLoS ONE 2019, 14, e0209638. [Google Scholar] [CrossRef]
- Safari Zanjani, F.; Haghani, A.; Mousavi, S.H.; Safari Zanjani, H.; Muniroglu, S. The Role of Core Stability Exercises on Internal Rotator Cuff Muscles Strength and its Motor Function in Amateur Archers. Phys. Treat. Specif. Phys. Ther. J. 2022, 12, 93–102. [Google Scholar] [CrossRef]
- Zemkova, E.; Zapletalova, L. The Role of Neuromuscular Control of Postural and Core Stability in Functional Movement and Athlete Performance. Front. Physiol. 2022, 13, 796097. [Google Scholar] [CrossRef]
- Baifa, Z.; Xinglong, Z.; Dongmei, L. Muscle coordination during archery shooting: A comparison of archers with different skill levels. Eur. J. Sport Sci. 2023, 23, 54–61. [Google Scholar] [CrossRef]
- Quan, C.H.; Lee, S. Relationship between Aiming Patterns and Scores in Archery Shooting. Korean J. Sport Biomech. 2016, 26, 8. [Google Scholar] [CrossRef]
- An, H.S. Effects of Balance and Kinematic Factors on Archery Score during Archery Shooting. J. Korea Converg. Soc. 2018, 9, 8. [Google Scholar] [CrossRef]
- Shinohara, H.; Hosomi, R.; Sakamoto, R.; Urushihata, T.; Yamamoto, S.; Higa, C.; Oyama, S. Effect of exercise devised to reduce arm tremor in the sighting phase of archery. PLoS ONE 2023, 18, e0285223. [Google Scholar] [CrossRef] [PubMed]
- Edelmann-Nusser, J.; Heller, M.; Hofmann, M.; Ganter, N. On-target trajectories and the final pull in archery. Eur. J. Sport Sci. 2006, 6, 10. [Google Scholar] [CrossRef]
- Liao, C.N.; Fan, C.H.; Hsu, W.H.; Chang, C.F.; Yu, P.A.; Kuo, L.T.; Lu, B.L.; Hsu, R.W. Twelve-Week Lower Trapezius-Centred Muscular Training Regimen in University Archers. Healthcare 2022, 10, 171. [Google Scholar] [CrossRef]
- Ji, X.; Miller, J.; Gao, X.; Al Tamimi, Z.; Arzalluz, I.; Piovesan, D. An Ergonomics Analysis of Archers through Motion Tracking to Prevent Injuries and Improve Performance. Sensors 2024, 24, 1862. [Google Scholar] [CrossRef]
- Wu, T.T.; Lo, S.L.; Chen, H.; Yang, J.S.; Peng, H.T. Arch-Support Insoles Benefit the Archery Performance and Stability of Compound Archers. Int. J. Environ. Res. Public Health 2022, 19, 8424. [Google Scholar] [CrossRef]
- Clarys, J.P.; Cabri, J.; Bollens, E.; Sleeckx, R.; Taeymans, J.; Vermeiren, M.; Van Reeth, G.; Voss, G. Muscular activity of different shooting distances, different release techniques, and different performance levels, with and without stabilizers, in target archery. J. Sports Sci. 1990, 8, 235–257. [Google Scholar] [CrossRef]
- Ertan, H. Muscular activation patterns of the bow arm in recurve archery. J. Sci. Med. Sport/Sports Med. Aust. 2009, 12, 357–360. [Google Scholar] [CrossRef]
- Zhou, C.; Hopkins, W.G.; Mao, W.; Calvo, A.L.; Liu, H. Match Performance of Soccer Teams in the Chinese Super League-Effects of Situational and Environmental Factors. Int. J. Environ. Res. Public Health 2019, 16, 4238. [Google Scholar] [CrossRef]
- Williams, C. Environmental factors affecting elite young athletes. Med. Sport Sci. 2011, 56, 150–170. [Google Scholar] [CrossRef] [PubMed]
- Konda, M.; Mangal, R.; Daniel, A.; Stead, T.S.; Ganti, L. Archery-Related Musculoskeletal Injuries: An Epidemiological Study Revealing Injury Sites, Risk Factors, and Implications for Prevention. Orthop. Rev. 2023, 15, 88933. [Google Scholar] [CrossRef] [PubMed]
- Aliperti, C.; Steckenrider, J.; Sattari, D.; Peterson, J.; Bell, C.; Zifchock, R. Leveraging Sensor Technology to Characterize the Postural Control Spectrum. Sensors 2024, 24, 7420. [Google Scholar] [CrossRef]
- Park, J.L.; Logan, O. High-speed video analysis of arrow behaviour during the power stroke of a recurve archery bow. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2012, 227, 9. [Google Scholar] [CrossRef]
- Park, J.L. The Behaviour of An Arrow Shot from a Compound Archery Bow. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2011, 225, 14. [Google Scholar] [CrossRef]
- Norlander, T.; Bergman, H.; Archer, T. Primary process in competitive archery performance: Effects of flotation REST. J. Appl. Sport Psychol. 1999, 11, 16. [Google Scholar] [CrossRef]
- Swanenburg, J.; de Bruin, E.D.; Favero, K.; Uebelhart, D.; Mulder, T. The reliability of postural balance measures in single and dual tasking in elderly fallers and non-fallers. BMC Musculoskelet. Disord. 2008, 9, 162. [Google Scholar] [CrossRef]
- Golriz, S.; Hebert, J.J.; Foreman, K.B.; Walker, B.F. The validity of a portable clinical force plate in assessment of static postural control: Concurrent validity study. Chiropr. Man. Ther. 2012, 20, 15. [Google Scholar] [CrossRef]
- Kuch, A.; Tisserand, R.; Durand, F.; Monnet, T.; Debril, J.F. Postural adjustments preceding string release in trained archers. J. Sports Sci. 2023, 41, 677–685. [Google Scholar] [CrossRef]
- Taha, Z.; Musa, R.M.; Abdullah, M.R.; Razman, M.A.M.; Lee, C.M.; Adnan, F.A.; Abdullah, M.A.; Haque, M. The Application of Inertial Measurement Units and Wearable Sensors to Measure Selected Physiological Indicators in Archery. Asian J. Pharm. Res. Health Care 2017, 9, 8. [Google Scholar] [CrossRef]
- Armitage, M.; Beato, M.; McErlain-Naylor, S.A. Inter-unit reliability of IMU Step metrics using IMeasureU Blue Trident inertial measurement units for running-based team sport tasks. J. Sports Sci. 2021, 39, 1512–1518. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.H.; Quintana, C.; Morelli, N.; Heebner, N.; Winters, J.; Han, D.Y.; Hoch, M. Neurocognitive function influences dynamic postural stability strategies in healthy collegiate athletes. J. Sci. Med. Sport/Sports Med. Aust. 2022, 25, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.M.; Wyatt, S.N. Lower trapezius muscle strength in individuals with unilateral neck pain. J. Orthop. Sports Phys. Ther. 2011, 41, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Micoogullari, M.; Uygur, S.F.; Yosmaoglu, H.B. Effect of Scapular Stabilizer Muscles Strength on Scapular Position. Sports Health 2023, 15, 349–356. [Google Scholar] [CrossRef]
- Hirano, M.; Katoh, M. Absolute reliability of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer. J. Phys. Ther. Sci. 2015, 27, 2125–2127. [Google Scholar] [CrossRef][Green Version]
- Gaudet, J.; Handrigan, G. Assessing the Validity and Reliability of a Low-Cost Microcontroller-Based Load Cell Amplifier for Measuring Lower Limb and Upper Limb Muscular Force. Sensors 2020, 20, 4999. [Google Scholar] [CrossRef]
- Sung, L.; Kesha, K.; Avedschmidt, S.; Root, K.; Hlavaty, L. The Modern Compound Bow. J. Forensic Sci. 2018, 63, 130–139. [Google Scholar] [CrossRef]
- Simsek, D.; Cerrah, A.O.; Ertan, H.; Soylu, A.R. A comparison of the ground reaction forces of archers with different levels of expertise during the arrow shooting. Sci. Sports 2019, 34, 9. [Google Scholar] [CrossRef]
- Lau, J.S.; Ghafar, R.; Zulkifli, E.Z.; Hashim, H.A.; Mat Sakim, H.A. Comparison of Shooting Time Characteristics and Shooting Posture Between High-and Low-Performance Archers. Ann. Appl. Sport Sci. 2023, 11, 9. [Google Scholar] [CrossRef]
- Kim, K.; Cho, J.; Choi, H.; Song, J. Bow stability and postural sway during aiming and shooting in elite compound archery. Sports Biomech. 2025. online ahead of print. [Google Scholar] [CrossRef]
- Simsek, D.; Cerrah, A.; Ertan, H.; Tekçe, M. The assessment of postural control mechanisms in three archery disciplines: A preliminary study. Pamukkale J. Sport Sci. 2013, 4, 11. [Google Scholar]
- Arora, S.; Button, D.C.; Basset, F.A.; Behm, D.G. The effect of double versus single oscillating exercise devices on trunk and limb muscle activation. Int. J. Sports Phys. Ther. 2013, 8, 370–380. [Google Scholar]
- Wang, T.C.; Tsai, P.J.; Hsu, W.H. Trunk Movement and Sequential Trunk Muscle Activation During Oscillation Exercises Using Flexible Poles. J. Sport Rehabil. 2022, 31, 827–834. [Google Scholar] [CrossRef]
Recurve Archers | Compound Archers | p Value | Effect Size | |||
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | |||||
Age (years) | 19.0 ± 2.5 | 18.7 ± 2.5 | 0.631 | 0.1 | ||
High (cm) | 168.3 ± 7.4 | 165.7 ± 6.7 | 0.205 | 0.4 | ||
Weight (kg) | 73.5 ± 14.4 | 65.8 ± 10.0 * | 0.036 | 0.6 | ||
BMI (kg/m2) | 25.9 ± 4.7 | 23.9 ± 3.0 | 0.067 | 0.5 | ||
Male/Female | 12:7 | 7:11 | 0.140 | 0.4 # | ||
Muscle strength (kgf) | Drawing side | Lower trapezius | 6.4 ± 2.1 | 5.5 ± 1.5 | 0.107 | 0.5 |
Upper trapezius | 34.7 ± 8.4 | 32.6 ± 6.5 | 0.312 | 0.3 | ||
Horizontal abductor | 19.0 ± 4.6 | 15.4 ± 4.1 * | 0.005 | 0.8 | ||
Horizontal adductor | 15.5 ± 4.0 | 12.6 ± 3.7 * | 0.010 | 0.8 | ||
Bow side | Lower trapezius | 6.5 ± 2.5 | 5.1 ± 1.7 * | 0.018 | 0.7 | |
Upper trapezius | 35.0 ± 9.3 | 33.9 ± 6.8 | 0.645 | 0.1 | ||
Horizontal abductor | 19.1 ± 4.5 | 15.4 ± 4.4 * | 0.005 | 0.8 | ||
Horizontal adductor | 15.1 ± 3.8 | 13.8 ± 3.7 | 0.221 | 0.3 | ||
Average scores of every arrow | 8.3 ± 0.7 | 9.1 ± 0.3 * | 0.001 | 1.5 |
Recurve Archers | Compound Archers | p Value | Effect Size | |||
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | |||||
Center of pressure (mm) | 0.5 s before the arrow release | COPd | 51.9 ± 12.7 | 61.6 ± 16.4 * | 0.022 | 0.7 |
COPx | 1.1 ± 0.9 | 1.5 ± 0.6 * | 0.043 | 0.5 | ||
COPy | 3.3 ± 2.4 | 3.0 ± 1.3 | 0.628 | 0.2 | ||
0.1 s after the arrow release | COPd | 13.5 ± 3.8 | 14.0 ± 3.8 | 0.629 | 0.1 | |
COPx | 1.5 ± 0.9 | 1.5 ± 0.6 | 0.922 | 0.0 | ||
COPy | 5.4 ± 2.2 | 3.2 ± 0.9 * | 0.001 | 1.3 | ||
Angular velocity (°/s) | 0.5 s before the arrow release | Left ankle | 1.8 ± 1.1 | 1.7 ± 0.3 | 0.716 | 0.1 |
Wrist of bow side | 12.4 ± 26.5 | 3.5 ± 1.6 | 0.115 | 0.5 | ||
Wrist of drawing side | 7.5 ± 8.5 | 3.1 ± 1.0 * | 0.018 | 0.7 | ||
Lower back | 4.1 ± 2.3 | 3.4 ± 1.3 | 0.194 | 0.4 | ||
0.1 s after the arrow release | Left ankle | 3.9 ± 2.5 | 2.2 ± 0.4 * | 0.003 | 0.9 | |
Wrist of bow side | 132.6 ± 52.7 | 104.7 ± 36.0 * | 0.037 | 0.6 | ||
Wrist of drawing side | 271.4 ± 73.4 | 215.5 ± 61.0 * | 0.006 | 0.8 | ||
Lower back | 29.3 ± 22.1 | 19.8 ± 18.1 | 0.107 | 0.5 |
Unstandardized Coefficients | Standardized Coefficients | 95% CI | |||||
---|---|---|---|---|---|---|---|
B | Standard Error | β | Lower | Upper | |||
Intercept | 14.502 | 2.502 | 9.997 | 19.006 | |||
Center of pressure | 0.1 s after the arrow release | COPd | −0.109 | 0.047 | −0.351 * | −0.202 | −0.016 |
COPx | −0.010 | 0.188 | −0.007 | −0.382 | 0.362 | ||
COPy | 0.093 | 0.072 | 0.174 | −0.049 | 0.235 | ||
Angular velocity | 0.5 s before the arrow release | Wrist of bow side | −0.002 | 0.008 | −0.049 | −0.019 | 0.014 |
Wrist of drawing side | −0.003 | 0.015 | −0.025 | −0.032 | 0.027 | ||
Lower back | 0.013 | 0.071 | 0.024 | −0.128 | 0.154 | ||
0.1 s after the arrow release | Left ankle | −0.071 | 0.076 | −0.143 | −0.221 | 0.079 | |
Wrist of bow side | −0.007 | 0.003 | −0.259 * | −0.012 | −0.001 | ||
Wrist of drawing side | −0.003 | 0.002 | −0.155 | −0.008 | 0.002 | ||
Lower back | 0.004 | 0.006 | 0.073 | −0.008 | 0.016 |
Unstandardized Coefficients | Standardized Coefficients | 95% CI | |||||
---|---|---|---|---|---|---|---|
B | Standard Error | β | Lower | Upper | |||
Intercept | 11.847 | 1.448 | 8.979 | 14.714 | |||
Center of pressure | 0.5 s before the arrow release | COPx | −0.169 | 0.122 | −0.170 | −0.411 | 0.073 |
COPy | −0.121 | 0.058 | −0.242 * | −0.235 | −0.007 | ||
0.1 s after the arrow release | COPd | −0.022 | 0.024 | −0.121 | −0.069 | 0.024 | |
COPx | 0.083 | 0.119 | 0.070 | −0.153 | 0.319 | ||
COPy | 0.115 | 0.073 | 0.168 | −0.028 | 0.259 | ||
Angular velocity | 0.5 s before the arrow release | Left ankle | −0.058 | 0.241 | −0.025 | −0.535 | 0.420 |
Wrist of bow side | −0.061 | 0.054 | −0.135 | −0.168 | 0.047 | ||
Wrist of drawing side | −0.191 | 0.080 | −0.259 * | −0.349 | −0.034 | ||
Lower back | 0.150 | 0.082 | 0.237 | −0.012 | 0.312 | ||
0.1 s after the arrow release | Left ankle | 0.097 | 0.196 | 0.059 | −0.292 | 0.486 | |
Wrist of bow side | −0.001 | 0.002 | −0.035 | −0.006 | 0.004 | ||
Wrist of drawing side | −0.001 | 0.001 | −0.096 | −0.004 | 0.001 | ||
Lower back | −0.004 | 0.006 | −0.090 | −0.016 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, C.-H.; Liao, C.-N.; Hsu, W.-H. Associations of Scoring Accuracy with Postural Stability and Strength Measures in Archers on a Standard Archery Site. Sports 2025, 13, 310. https://doi.org/10.3390/sports13090310
Fan C-H, Liao C-N, Hsu W-H. Associations of Scoring Accuracy with Postural Stability and Strength Measures in Archers on a Standard Archery Site. Sports. 2025; 13(9):310. https://doi.org/10.3390/sports13090310
Chicago/Turabian StyleFan, Chun-Hao, Chien-Nan Liao, and Wei-Hsiu Hsu. 2025. "Associations of Scoring Accuracy with Postural Stability and Strength Measures in Archers on a Standard Archery Site" Sports 13, no. 9: 310. https://doi.org/10.3390/sports13090310
APA StyleFan, C.-H., Liao, C.-N., & Hsu, W.-H. (2025). Associations of Scoring Accuracy with Postural Stability and Strength Measures in Archers on a Standard Archery Site. Sports, 13(9), 310. https://doi.org/10.3390/sports13090310