Cryocompression Therapy for Recovery from Eccentric Exercise-Induced Muscle Damage in Healthy Young Men
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Procedures
2.2.1. Eccentric Exercise
2.2.2. Treatment Intervention
2.2.3. Muscle Damage Indicators
2.2.4. Proprioception
2.2.5. Performance Tests
2.3. Statistical Analyses
3. Results
3.1. Baseline Measurements
3.2. Muscle Damage Indicators
3.3. Proprioception
3.4. Performance Parameters
3.5. Summary Table
4. Discussion
4.1. Muscle Damage Indicators
4.2. Proprioception
4.3. Performance Parameters
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DOMS | Delayed Onset Muscle Soreness |
ROM | Range of Motion |
CK | Creatine Kinase |
CMJ | Countermovement Jump |
YYIR1 | Yo-Yo Intermittent Recovery Test Level 1 |
RBE | Repeated Bout Effect |
EIMD | Exercise-induced Muscle Damage |
MVIC | Maximal Voluntary Isometric Contraction |
NME | Neuromuscular Efficiency |
RMS-EMG | Root Mean Square Electromyography |
CIR | Circumference |
RANG | Relaxed Angle |
FANG | Flexed Angle |
VAS | Visual Analog Scale |
PT | Peak Torque |
RFD | Rate of Force Development |
ANOVA | Analysis of Variance |
CWI | Cold-Water Immersion |
PBC | Partial-Body Cryotherapy |
IPC | Intermittent Pneumatic Compression |
PS | Position Sense |
FS | Force Sense |
References
- Clarkson, P.M.; Hubal, M.J. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 2002, 81, S52–S69. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Nosaka, K.; Braun, B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med. Sci. Sports Exerc. 1992, 24, 512–520. [Google Scholar] [CrossRef]
- Hirose, L.; Nosaka, K.; Newton, M.; Laveder, A.; Kano, M.; Peake, J.; Suzuki, K. Changes in inflammatory mediators following eccentric exercise of the elbow flexors. Exerc. Immunol. Rev. 2004, 10, 75–90. [Google Scholar]
- MacIntyre, D.L.; Reid, W.D.; McKenzie, D.C. Delayed muscle soreness. The inflammatory response to muscle injury and its clinical implications. Sports Med. 1995, 20, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Wiewelhove, T.; Raeder, C.; Meyer, T.; Kellmann, M.; Pfeiffer, M.; Ferrauti, A. Markers for Routine Assessment of Fatigue and Recovery in Male and Female Team Sport Athletes during High-Intensity Interval Training. PLoS ONE 2015, 10, e0139801. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.Y.; Nosaka, K.; Chen, T.C. Muscle Damage and Performance after Single and Multiple Simulated Matches in University Elite Female Soccer Players. Int. J. Environ. Res. Public Health 2021, 18, 4134. [Google Scholar] [CrossRef]
- Paschalis, V.; Nikolaidis, M.G.; Theodorou, A.A.; Deli, C.K.; Raso, V.; Jamurtas, A.Z.; Giakas, G.; Koutedakis, Y. The effects of eccentric exercise on muscle function and proprioception of individuals being overweight and underweight. J. Strength Cond. Res. 2013, 27, 2542–2551. [Google Scholar] [CrossRef]
- Paschalis, V.; Nikolaidis, M.G.; Theodorou, A.A.; Giakas, G.; Jamurtas, A.Z.; Koutedakis, Y. Eccentric exercise affects the upper limbs more than the lower limbs in position sense and reaction angle. J. Sports Sci. 2010, 28, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.; Hume, P.; Maxwell, L. Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Med. 2003, 33, 145–164. [Google Scholar] [CrossRef]
- DuPont, W.H.; Meuris, B.J.; Hardesty, V.H.; Barnhart, E.C.; Tompkins, L.H.; Golden, M.J.P.; Usher, C.J.; Spence, P.A.; Caldwell, L.K.; Post, E.M.; et al. The Effects Combining Cryocompression Therapy following an Acute Bout of Resistance Exercise on Performance and Recovery. J. Sports Sci. Med. 2017, 16, 333–342. [Google Scholar]
- Bleakley, C.; McDonough, S.; Gardner, E.; Baxter, G.D.; Hopkins, J.T.; Davison, G.W. Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. Cochrane Database Syst. Rev. 2012, 2012, CD008262. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.Y.; Yim, Y.M.; Bercades, D.; Cheng, T.T.; Ngo, K.L.; Lo, K.K. Comparison of different cryotherapy recovery methods in elite junior cyclists. Asia-Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2016, 5, 17–23. [Google Scholar] [CrossRef]
- Hohenauer, E.; Taeymans, J.; Baeyens, J.P.; Clarys, P.; Clijsen, R. The Effect of Post-Exercise Cryotherapy on Recovery Characteristics: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0139028. [Google Scholar] [CrossRef]
- Knobloch, K.; Grasemann, R.; Jagodzinski, M.; Richter, M.; Zeichen, J.; Krettek, C. Changes of Achilles midportion tendon microcirculation after repetitive simultaneous cryotherapy and compression using a Cryo/Cuff. Am. J. Sports Med. 2006, 34, 1953–1959. [Google Scholar] [CrossRef]
- Knobloch, K.; Grasemann, R.; Spies, M.; Vogt, P.M. Midportion achilles tendon microcirculation after intermittent combined cryotherapy and compression compared with cryotherapy alone: A randomized trial. Am. J. Sports Med. 2008, 36, 2128–2138. [Google Scholar] [CrossRef]
- Levy, A.S.; Marmar, E. The role of cold compression dressings in the postoperative treatment of total knee arthroplasty. Clin. Orthop. Relat. Res. 1993, 297, 174–178. [Google Scholar] [CrossRef]
- Mora, S.; Zalavras, C.G.; Wang, L.; Thordarson, D.B. The role of pulsatile cold compression in edema resolution following ankle fractures: A randomized clinical trial. Foot Ankle Int. 2002, 23, 999–1002. [Google Scholar] [CrossRef]
- Schröder, D.; Pässler, H.H. Combination of cold and compression after knee surgery. A prospective randomized study. Knee Surg. Sports Traumatol. Arthrosc. 1994, 2, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Dervin, G.F.; Taylor, D.E.; Keene, G.C. Effects of cold and compression dressings on early postoperative outcomes for the arthroscopic anterior cruciate ligament reconstruction patient. J. Orthop. Sports Phys. Ther. 1998, 27, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.M.; Williams, D.; Ivory, J.P.; Day, S.; Williamson, D.M. The use of cold compression dressings after total knee replacement: A randomized controlled trial. Orthopedics 1998, 21, 59–61. [Google Scholar] [CrossRef]
- Leegwater, N.C.; Bloemers, F.W.; de Korte, N.; Heetveld, M.J.; Kalisvaart, K.J.; Schönhuth, C.P.; Pijnenburg, B.A.C.M.; Burger, B.J.; Ponsen, K.J.; Maier, A.B.; et al. Postoperative continuous-flow cryocompression therapy in the acute recovery phase of hip fracture surgery—A randomized controlled clinical trial. Injury 2017, 48, 2754–2761. [Google Scholar] [CrossRef]
- Høiness, P.R.; Hvaal, K.; Engebretsen, L. Severe hypothermic injury to the foot and ankle caused by continuous cryocompression therapy. Knee Surg. Sports Traumatol. Arthrosc. 1998, 6, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.; Jeffery, J.; Rhodes, D. Recovery profiles of eccentric hamstring strength in response to cooling and compression. J. Bodyw. Mov. Ther. 2021, 27, 9–15. [Google Scholar] [CrossRef]
- Alexander, J.; Keegan, J.; Reedy, A.; Rhodes, D. Effects of contemporary cryo-compression on post-training performance in elite academy footballers. Biol. Sport 2022, 39, 11–17. [Google Scholar] [CrossRef]
- McHugh, M.P. Recent advances in the understanding of the repeated bout effect: The protective effect against muscle damage from a single bout of eccentric exercise. Scand. J. Med. Sci. Sports 2003, 13, 88–97. [Google Scholar] [CrossRef]
- Hoffman, M.; Schrader, J.; Applegate, T.; Koceja, D. Unilateral postural control of the functionally dominant and nondominant extremities of healthy subjects. J. Athl. Train. 1998, 33, 319. [Google Scholar]
- Chen, T.C.; Yang, T.J.; Huang, M.J.; Wang, H.S.; Tseng, K.W.; Chen, H.L.; Nosaka, K. Damage and the repeated bout effect of arm, leg, and trunk muscles induced by eccentric resistance exercises. Scand. J. Med. Sci. Sports 2019, 29, 725–735. [Google Scholar] [CrossRef]
- Paulsen, G.; Vissing, K.; Kalhovde, J.M.; Ugelstad, I.; Bayer, M.L.; Kadi, F.; Schjerling, P.; Hallén, J.; Raastad, T. Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans. Am. J. Physiol.—Regul. Integr. Comp. Physiol. 2007, 293, 844–853. [Google Scholar] [CrossRef]
- Craig, A.B.; Dvorak, M., Jr. Thermal regulation during water immersion. J. Appl. Physiol. 1966, 21, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C.; Lin, K.Y.; Chen, H.L.; Lin, M.J.; Nosaka, K. Comparison in eccentric exercise-induced muscle damage among four limb muscles. Eur. J. Appl. Physiol. 2011, 111, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Howatson, G.; van Someren, K.A. The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008, 38, 483–503. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C. Effects of a second bout of maximal eccentric exercise on muscle damage and electromyographic activity. Eur. J. Appl. Physiol. 2003, 89, 115–121. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef]
- Hernández-Preciado, J.A.; Baz, E.; Balsalobre-Fernández, C.; Marchante, D.; Santos-Concejero, J. Potentiation Effects of the French Contrast Method on Vertical Jumping Ability. J. Strength Cond. Res. 2018, 32, 1909–1914. [Google Scholar] [CrossRef]
- Myers, B.A.; Jenkins, W.L.; Killian, C.; Rundquist, P. Normative data for hop tests in high school and collegiate basketball and soccer players. Int. J. Sports Phys. Ther. 2014, 9, 596–603. [Google Scholar]
- Maruyama, T.; Mizuno, S.; Goto, K. Effects of cold water immersion and compression garment use after eccentric exercise on recovery. J. Exerc. Nutr. Biochem. 2019, 23, 48–54. [Google Scholar] [CrossRef]
- Hohenauer, E.; Costello, J.T.; Deliens, T.; Clarys, P.; Stoop, R.; Clijsen, R. Partial body cryotherapy (−135 °C) and cold-water immersion (10 °C) after muscle damage in females. Scand. J. Med. Sci. Sports 2020, 30, 485–495. [Google Scholar] [CrossRef]
- de Freitas, V.H.; Ramos, S.P.; Bara-Filho, M.G.; Freitas, D.G.S.; Coimbra, D.R.; Cecchini, R.; Guarnier, F.A.; Nakamura, F.Y. Effect of Cold Water Immersion Performed on Successive Days on Physical Performance, Muscle Damage, and Inflammatory, Hormonal, and Oxidative Stress Markers in Volleyball Players. J. Strength Cond. Res. 2019, 33, 502–513. [Google Scholar] [CrossRef]
- Siqueira, A.F.; Vieira, A.; Bottaro, M.; Ferreira-Júnior, J.B.; Nóbrega, O.T.; de Souza, V.C.; Marqueti, R.C.; Babault, N.; Durigan, J.L.Q. Multiple Cold-Water Immersions Attenuate Muscle Damage but not Alter Systemic Inflammation and Muscle Function Recovery: A Parallel Randomized Controlled Trial. Sci. Rep. 2018, 8, 10961. [Google Scholar] [CrossRef] [PubMed]
- Chleboun, G.S.; Howell, J.N.; Baker, H.L.; Ballard, T.N.; Graham, J.L.; Hallman, H.L.; Perkins, L.E.; Schauss, J.H.; Conatser, R.R. Intermittent pneumatic compression effect on eccentric exercise-induced swelling, stiffness, and strength loss. Arch. Phys. Med. Rehabil. 1995, 76, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Waller, T.; Caine, M.; Morris, R. Intermittent pneumatic compression technology for sports recovery. In The Engineering of Sport, 6th ed.; Springer: New York, NY, USA, 2006; Volume 3, Developments for Innovation; pp. 391–396. [Google Scholar]
- Kullenberg, B.; Ylipää, S.; Söderlund, K.; Resch, S. Postoperative cryotherapy after total knee arthroplasty: A prospective study of 86 patients. J. Arthroplast. 2006, 21, 1175–1179. [Google Scholar] [CrossRef]
- Murgier, J.; Cassard, X. Cryotherapy with dynamic intermittent compression for analgesia after anterior cruciate ligament reconstruction. Preliminary study. Orthop. Traumatol. Surg. Res. OTSR 2014, 100, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Goodall, S.; Howatson, G. The effects of multiple cold water immersions on indices of muscle damage. J. Sports Sci. Med. 2008, 7, 235–241. [Google Scholar] [PubMed]
- Howatson, G.; Gaze, D.; van Someren, K.A. The efficacy of ice massage in the treatment of exercise-induced muscle damage. Scand. J. Med. Sci. Sports 2005, 15, 416–422. [Google Scholar] [CrossRef]
- Howatson, G.; Goodall, S.; van Someren, K.A. The influence of cold water immersions on adaptation following a single bout of damaging exercise. Eur. J. Appl. Physiol. 2009, 105, 615–621. [Google Scholar] [CrossRef]
- Wiecha, S.; Jarocka, M.; Wiśniowski, P.; Cieśliński, M.; Price, S.; Makaruk, B.; Kotowska, J.; Drabarek, D.; Cieśliński, I.; Sacewicz, T. The efficacy of intermittent pneumatic compression and negative pressure therapy on muscle function, soreness and serum indices of muscle damage: A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2021, 13, 144. [Google Scholar] [CrossRef]
- Yanaoka, T.; Numata, U.; Nagano, K.; Kurosaka, S.; Kawashima, H. Effects of different intermittent pneumatic compression stimuli on ankle dorsiflexion range of motion. Front. Physiol. 2022, 13, 1054806. [Google Scholar] [CrossRef]
- Deal, D.N.; Tipton, J.; Rosencrance, E.; Curl, W.W.; Smith, T.L. Ice reduces edema. A study of microvascular permeability in rats. J. Bone Jt. Surg. 2002, 84, 1573–1578. [Google Scholar] [CrossRef]
- Verducci, F.M. Interval cryotherapy decreases fatigue during repeated weight lifting. J. Athl. Train. 2000, 35, 422–426. [Google Scholar]
- Cranston, A.W.; Driller, M.W. Investigating the Use of an Intermittent Sequential Pneumatic Compression Arm Sleeve for Recovery After Upper-Body Exercise. J. Strength Cond. Res. 2022, 36, 1548–1553. [Google Scholar] [CrossRef] [PubMed]
- Pointon, M.; Duffield, R.; Cannon, J.; Marino, F.E. Cold application for neuromuscular recovery following intense lower-body exercise. Eur. J. Appl. Physiol. 2011, 111, 2977–2986. [Google Scholar] [CrossRef]
- Guilhem, G.; Hug, F.; Couturier, A.; Regnault, S.; Bournat, L.; Filliard, J.R.; Dorel, S. Effects of air-pulsed cryotherapy on neuromuscular recovery subsequent to exercise-induced muscle damage. Am. J. Sports Med. 2013, 41, 1942–1951. [Google Scholar] [CrossRef]
- Shimokochi, Y.; Kuwano, S.; Yamaguchi, T.; Abutani, H.; Shima, N. Effects of Wearing a Compression Garment During Night Sleep on Recovery from High-Intensity Eccentric-Concentric Quadriceps Muscle Fatigue. J. Strength Cond. Res. 2017, 31, 2816–2824. [Google Scholar] [CrossRef]
- Gaspar-Junior, J.J.; Dellagrana, R.A.; Barbosa, F.S.S.; Anghinoni, A.P.; Taciro, C.; Carregaro, R.L.; Martinez, P.F.; Oliveira-Junior, S.A. Efficacy of Different Cold-Water Immersion Temperatures on Neuromotor Performance in Young Athletes. Life 2022, 12, 683. [Google Scholar] [CrossRef] [PubMed]
- Rome, L.C. Influence of temperature on muscle recruitment and muscle function in vivo. Am. J. Physiol. 1990, 259, 210–222. [Google Scholar] [CrossRef]
- Roberts, L.A.; Nosaka, K.; Coombes, J.S.; Peake, J.M. Cold water immersion enhances recovery of submaximal muscle function after resistance exercise. Am. J. Physiol.—Regul. Integr. Comp. Physiol. 2014, 307, 998–1008. [Google Scholar] [CrossRef]
- Wilson, L.J.; Dimitriou, L.; Hills, F.A.; Gondek, M.B.; van Wyk, A.; Turek, V.; Rivkin, T.; Villiere, A.; Jarvis, P.; Miller, S.; et al. Cold Water Immersion Offers No Functional or Perceptual Benefit Compared to a Sham Intervention During a Resistance Training Program. J. Strength Cond. Res. 2021, 35, 2720–2727. [Google Scholar] [CrossRef]
- Nunes, R.F.H.; Duffield, R.; Nakamura, F.Y.; Bezerra, E.S.; Sakugawa, R.L.; Loturco, I.; Bobinski, F.; Martins, D.F.; Guglielmo, L.G.A. Recovery following Rugby Union matches: Effects of cold water immersion on markers of fatigue and damage. Appl. Physiol. Nutr. Metab. 2019, 44, 546–556. [Google Scholar] [CrossRef]
- Blumkaitis, J.C.; Ratliff, K.; Stecker, R.A.; Martin, J.S.; Sunderland, K.L.; Richmond, S.; Kerksick, C.M.; Mumford, P.W. Comparison of Calf Only External Pneumatic Compression and Compression Socks on Performance Characteristics in Counter Movement Jump. Fed. Am. Soc. Exp. Biol. J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Blumkaitis, J.C.; Moon, J.M.; Ratliff, K.M.; Stecker, R.A.; Richmond, S.R.; Sunderland, K.L.; Kerksick, C.M.; Martin, J.S.; Mumford, P.W. Effects of an external pneumatic compression device vs static compression garment on peripheral circulation and markers of sports performance and recovery. Eur. J. Appl. Physiol. 2022, 122, 1709–1722. [Google Scholar] [CrossRef]
- Furmanek, M.P.; Słomka, K.; Juras, G. The effects of cryotherapy on proprioception system. BioMed Res. Int. 2014, 2014, 696397. [Google Scholar] [CrossRef]
- Aljohani, M.M.; Abdel-azeim, A.A.; Alshehri, Y.S.; Aboonq, M.S.; Aljohani, R.K.; Khaled, O.A. Cryotherapy effects on knee proprioception and quadriceps performance in healthy college students. Isokinet. Exerc. Sci. 2024, 32, 273–280. [Google Scholar] [CrossRef]
- Ghai, S.; Nilson, F.; Gustavsson, J.; Ghai, I. Influence of compression garments on proprioception: A systematic review and meta-analysis. Ann. New York Acad. Sci. 2024, 1536, 60–81. [Google Scholar] [CrossRef]
- Négyesi, J.; Zhang, L.Y.; Jin, R.N.; Hortobágyi, T.; Nagatomi, R. A below-knee compression garment reduces fatigue-induced strength loss but not knee joint position sense errors. Eur. J. Appl. Physiol. 2021, 121, 219–229. [Google Scholar] [CrossRef]
- Hong, W.H.; Lo, S.F.; Wu, H.C.; Chiu, M.C. Effects of compression garment on muscular efficacy, proprioception, and recovery after exercise-induced muscle fatigue onset for people who exercise regularly. PLoS ONE 2022, 17, e0264569. [Google Scholar] [CrossRef]
- Costello, J.T.; Algar, L.A.; Donnelly, A.E. Effects of whole-body cryotherapy (−110 °C) on proprioception and indices of muscle damage. Scand. J. Med. Sci. Sports 2012, 22, 190–198. [Google Scholar] [CrossRef]
- Rubley, M.D.; Holcomb, W.R.; Guadagnoli, M.A. Time course of habituation after repeated ice-bath immersion of the ankle. J. Sport Rehabil. 2003, 12, 323–332. [Google Scholar] [CrossRef]
- Tremblay, F.; Estephan, L.; Legendre, M.; Sulpher, S. Influence of Local Cooling on Proprioceptive Acuity in the Quadriceps Muscle. J. Athl. Train. 2001, 36, 119–123. [Google Scholar]
- Furmanek, M.P.; Słomka, K.J.; Sobiesiak, A.; Rzepko, M.; Juras, G. The Effects of Cryotherapy on Knee Joint Position Sense and Force Production Sense in Healthy Individuals. J. Hum. Kinet. 2018, 61, 39–51. [Google Scholar] [CrossRef]
- LaRiviere, J.; Osternig, L.R. The effect of ice immersion on joint position sense. J. Sport Rehabil. 1994, 3, 58–67. [Google Scholar] [CrossRef]
- Fyfe, J.J.; Broatch, J.R.; Trewin, A.J.; Hanson, E.D.; Argus, C.K.; Garnham, A.P.; Halson, S.L.; Polman, R.C.; Bishop, D.J.; Petersen, A.C. Cold water immersion attenuates anabolic signaling and skeletal muscle fiber hypertrophy, but not strength gain, following whole-body resistance training. J. Appl. Physiol. 2019, 127, 1403–1418. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Neubauer, O.; Della Gatta, P.A.; Nosaka, K. Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Trybulski, R.; Kużdżał, A.; Stanula, A.; Muracki, J.; Kawczyński, A.; Kuczmik, W.; Wang, H.K. Acute effects of cold, heat and contrast pressure therapy on forearm muscles regeneration in combat sports athletes: A randomized clinical trial. Sci. Rep. 2024, 14, 22410. [Google Scholar] [CrossRef] [PubMed]
Variable | Main Finding (Interaction) | Main Finding (Time Effect/Interaction) | Recovery to Baseline |
---|---|---|---|
CIR | CT, NWC, CC < CON | ↑ post-exercise in CON, NWC groups | CC group recovered fastest |
ROM | Not significant | ↓ post-exercise in all groups | Recovery rank: NWC > CC > CON > CT |
Muscle soreness (VAS) | CC < CON | ↑ post-exercise in all groups | CC showed greatest and most sustained reduction |
MVIC | Not significant | ↓ in CON and CT groups | CON—Day 5 CT—Day 3 |
RMS-EMG | Not significant | No significant changes | – |
NME | Not significant | ↓ in CT and CC groups | CT—Day 3 CC—Day 2 |
RFD | Not significant | ↓ in all groups | NWC recovered fastest; CC slowest |
PS (position sense) | Not significant | No significant changes | – |
FS (force sense) | Not significant | NWC ↑ on Day 3 | – |
CMJ height | Not significant | ↓ in all groups | CT/NWC/CC recovered by Day 4; CON not by Day 5 |
30 m timed hop | Not significant | ↑ in CON on Day 4–5 ↑ in NWC on Day 1–2 | NWC by Day 3; CON not by Day 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.-D.; Chen, T.C.; Wang, H.-H. Cryocompression Therapy for Recovery from Eccentric Exercise-Induced Muscle Damage in Healthy Young Men. Sports 2025, 13, 290. https://doi.org/10.3390/sports13090290
Lin S-D, Chen TC, Wang H-H. Cryocompression Therapy for Recovery from Eccentric Exercise-Induced Muscle Damage in Healthy Young Men. Sports. 2025; 13(9):290. https://doi.org/10.3390/sports13090290
Chicago/Turabian StyleLin, Shi-Di, Trevor C. Chen, and Hung-Hao Wang. 2025. "Cryocompression Therapy for Recovery from Eccentric Exercise-Induced Muscle Damage in Healthy Young Men" Sports 13, no. 9: 290. https://doi.org/10.3390/sports13090290
APA StyleLin, S.-D., Chen, T. C., & Wang, H.-H. (2025). Cryocompression Therapy for Recovery from Eccentric Exercise-Induced Muscle Damage in Healthy Young Men. Sports, 13(9), 290. https://doi.org/10.3390/sports13090290