Appendicular Lean Mass Index Using Dual-Energy X-Ray Absorptiometry (DEXA) in Professional Football: A Pilot Study of a New Method for Improved Inter-Operator Reproducibility and Analysis of Pelvi-Trochanteric Muscles
Abstract
1. Introduction
2. Methods
2.1. Population
2.2. Methods
2.2.1. General Study Design
2.2.2. Description of the Digital Scan Analysis Methods
- The trunk lines: two vertical lines, one for each side, must be placed around the chest/abdomen and separate the arm ROIs from the trunk ROI. The upper portion of each line is called a shoulder cut line, and it has to bisect the humeral-scapula joint.
- The pelvic line: one horizontal line must be placed just above the upper boundaries of the iliac crests.
- The groin lines: two angled lines, one for each side, have to pass through the center of the femoral neck, and a leg line (one vertical line) has to evenly divide the legs and the feet [17].
- The leg line: one vertical line starts at the end of the groin lines and separates the two lower limbs.
- The two trunk lines and the pelvic line were placed with the same landmarks as in the conventional measure.
- The two groin lines were merged with the pelvic line.
- The vertical leg line has to pass through the symphysis and separate, as in the conventional measure, the two lower limbs.
2.2.3. Scan Analysis
- “Conventional measure: The line separating the head should pass under the mandible. The line separating the spine from the thorax should pass along the spine. The line separating the upper limbs from the body should pass by the joint gleno-humeral. The line separating the pelvis from the trunk should pass over the upper edge of the iliac crests. The line separating the pelvis from the lower limbs should cross by the middle of the neck of the femur.”
- “New measure: The line separating the head should pass under the mandible. The line separating the spine from the thorax should pass along the spine. The line separating the upper limbs from the body should pass by the joint gleno-humeral. The line separating the pelvis from the trunk should pass over the upper edge of the iliac crests. The point of intersection of the lines separating the pelvis from the lower limbs should put on the middle of the line separating the pelvis from the trunk.”
2.2.4. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Appendicular Lean Mass Index (ALMI) Using the Standard Method
3.3. Appendicular Lean Mass Index (ALMI) Using the New Method
3.4. Comparison Between Conventional and Strasbourg Method
4. Discussion
4.1. Feasibility and Reproducibility of Standard and New DEXA Methods
4.2. Probable Perspectives Opened up by the Assessment of the Pelvi-Trochanteric Muscles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef]
- Hind, K.; Slater, G.; Oldroyd, B.; Lees, M.; Thurlow, S.; Barlow, M.; Shepherd, J. Interpretation of Dual-Energy X-Ray Absorptiometry-Derived Body Composition Change in Athletes: A Review and Recommendations for Best Practice. J. Clin. Densitom. 2018, 21, 429–443. [Google Scholar] [CrossRef]
- Bilsborough, J.C.; Greenway, K.; Opar, D.; Livingstone, S.; Cordy, J.; Coutts, A.J. The Accuracy and Precision of DXA for Assessing Body Composition in Team Sport Athletes. J. Sports Sci. 2014, 32, 1821–1828. [Google Scholar] [CrossRef]
- Santos, D.A.; Dawson, J.A.; Matias, C.N.; Rocha, P.M.; Minderico, C.S.; Allison, D.B.; Sardinha, L.B.; Silva, A.M. Reference Values for Body Composition and Anthropometric Measurements in Athletes. PLoS ONE 2014, 9, e97846. [Google Scholar] [CrossRef]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body Composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef]
- Milanese, C.; Cavedon, V.; Corradini, G.; De Vita, F.; Zancanaro, C. Seasonal DXA-Measured Body Composition Changes in Professional Male Soccer Players. J. Sports Sci. 2015, 33, 1219–1228. [Google Scholar] [CrossRef]
- Ramírez-Munera, M.; Arcusa, R.; López-Román, F.J.; Victoria-Montesinos, D.; García-Muñoz, A.M.; Ávila-Gandía, V.; Pérez-Piñero, S.; Marhuenda, J. Anthropometric and Body Composition Changes during Pre-Season of Spanish Professional Female Soccer Players According to Playing Position. Nutrients 2024, 16, 2799. [Google Scholar] [CrossRef]
- Melin, A.K.; Heikura, I.A.; Tenforde, A.; Mountjoy, M. Energy Availability in Athletics: Health, Performance, and Physique. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Aragon, A.A.; Schoenfeld, B.J.; Wildman, R.; Kleiner, S.; VanDusseldorp, T.; Taylor, L.; Earnest, C.P.; Arciero, P.J.; Wilborn, C.; Kalman, D.S.; et al. International Society of Sports Nutrition Position Stand: Diets and Body Composition. J. Int. Soc. Sports Nutr. 2017, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J. The Encyclopaedia of Sports Medicine in Collabororation with the International Federation of Sports Medicine: An IOC Medical Commission Publication. In Olympic Textbook of Science in Sport; Internationales Olympisches Komitee, Ed.; Blackwell: Malden, MA, USA, 2009; ISBN 978-1-4051-5638-7. [Google Scholar]
- Genton, L.; Mareschal, J.; Karsegard, V.L.; Achamrah, N.; Delsoglio, M.; Pichard, C.; Graf, C.; Herrmann, F.R. An Increase in Fat Mass Index Predicts a Deterioration of Running Speed. Nutrients 2019, 11, 701. [Google Scholar] [CrossRef] [PubMed]
- Dopsaj, M.; Zuoziene, I.J.; Milić, R.; Cherepov, E.; Erlikh, V.; Masiulis, N.; di Nino, A.; Vodičar, J. Body Composition in International Sprint Swimmers: Are There Any Relations with Performance? Int. J. Environ. Res. Public Health 2020, 17, 9464. [Google Scholar] [CrossRef]
- Bell, D.R.; Sanfilippo, J.L.; Binkley, N.; Heiderscheit, B.C. Lean Mass Asymmetry Influences Force and Power Asymmetry during Jumping in Collegiate Athletes. J. Strength Cond. Res. 2014, 28, 884–891. [Google Scholar] [CrossRef]
- Toomey, C.M.; Whittaker, J.L.; Nettel-Aguirre, A.; Reimer, R.A.; Woodhouse, L.J.; Ghali, B.; Doyle-Baker, P.K.; Emery, C.A. Higher Fat Mass Is Associated with a History of Knee Injury in Youth Sport. J. Orthop. Sports Phys. Ther. 2017, 47, 80–87. [Google Scholar] [CrossRef]
- Rueda-Cordoba, M.; Martin-Olmedo, J.J.; Espinar, S.; Ruiz, J.R.; Jurado-Fasoli, L. Multidimensional Differences Between Athletes of Endurance, Strength, and Intermittent Sports: Body Composition, Diet, Resting Metabolic Rate, Physical Activity, Sleep Quality, and Subjective Well-Being. Nutrients 2025, 17, 1172. [Google Scholar] [CrossRef]
- Al-Hayani, A. The Functional Anatomy of Hip Abductors. Folia Morphol. 2009, 68, 98–103. [Google Scholar]
- Bazzocchi, A.; Ponti, F.; Albisinni, U.; Battista, G.; Guglielmi, G. DXA: Technical Aspects and Application. Eur. J. Radiol. 2016, 85, 1481–1492. [Google Scholar] [CrossRef] [PubMed]
- Burén, J.; Svensson, M.; Liv, P.; Sjödin, A. Effects of a Ketogenic Diet on Body Composition in Healthy, Young, Normal-Weight Women: A Randomized Controlled Feeding Trial. Nutrients 2024, 16, 2030. [Google Scholar] [CrossRef] [PubMed]
- Christensen, H.S.; Borgbjerg, J.; Børty, L.; Bøgsted, M. On Jones et al.’s Method for Extending Bland-Altman Plots to Limits of Agreement with the Mean for Multiple Observers. BMC Med. Res. Methodol. 2020, 20, 304. [Google Scholar] [CrossRef]
- Giannini, M.; Charles, A.-L.; Evrard, C.; Blaess, J.; Bouchard-Marmen, M.; Debrut, L.; Perniola, S.; Laverny, G.; Javier, R.-M.; Charloux, A.; et al. Sarcopenia Assessed by DXA and Hand-Grip Dynamometer: A Potential Marker of Damage, Disability and Myokines Imbalance in Inflammatory Myopathies. Rheumatology 2024, 63, 2503–2514. [Google Scholar] [CrossRef]
- Ionan, A.C.; Polley, M.-Y.C.; McShane, L.M.; Dobbin, K.K. Comparison of Confidence Interval Methods for an Intra-Class Correlation Coefficient (ICC). BMC Med. Res. Methodol. 2014, 14, 121. [Google Scholar] [CrossRef]
- Levy, D.; Giannini, M.; Oulehri, W.; Riou, M.; Marcot, C.; Pizzimenti, M.; Debrut, L.; Charloux, A.; Geny, B.; Meyer, A. Long Term Follow-Up of Sarcopenia and Malnutrition after Hospitalization for COVID-19 in Conventional or Intensive Care Units. Nutrients 2022, 14, 912. [Google Scholar] [CrossRef]
- Libber, J.; Binkley, N.; Krueger, D. Clinical Observations in Total Body DXA: Technical Aspects of Positioning and Analysis. J. Clin. Densitom. 2012, 15, 282–289. [Google Scholar] [CrossRef]
- Lohman, M.; Tallroth, K.; Kettunen, J.A.; Marttinen, M.T. Reproducibility of Dual-Energy X-Ray Absorptiometry Total and Regional Body Composition Measurements Using Different Scanning Positions and Definitions of Regions. Metabolism 2009, 58, 1663–1668. [Google Scholar] [CrossRef]
- Lukaski, H.; Raymond-Pope, C.J. New Frontiers of Body Composition in Sport. Int. J. Sports Med. 2021, 42, 588–601. [Google Scholar] [CrossRef] [PubMed]
- Nana, A.; Slater, G.J.; Stewart, A.D.; Burke, L.M. Methodology Review: Using Dual-Energy X-Ray Absorptiometry (DXA) for the Assessment of Body Composition in Athletes and Active People. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 198–215. [Google Scholar] [CrossRef] [PubMed]
- Pizzimenti, M.; Meyer, A.; Charles, A.L.; Giannini, M.; Chakfé, N.; Lejay, A.; Geny, B. Sarcopenia and Peripheral Arterial Disease: A Systematic Review. J. Cachexia Sarcopenia Muscle 2020, 11, 866–886. [Google Scholar] [CrossRef]
- Valenzano, A.A.; Vasco, P.; D’Orsi, G.; Marzovillo, R.R.R.; Torquato, M.; Messina, G.; Polito, R.; Cibelli, G. Influence of Intermittent Fasting on Body Composition, Physical Performance, and the Orexinergic System in Postmenopausal Women: A Pilot Study. Nutrients 2025, 17, 1121. [Google Scholar] [CrossRef]
- Lorente Ramos, R.M.; Armán, J.A.; Galeano, N.A.; Hernández, A.M.; García Gómez, J.M.; Molinero, J.G. Dual Energy X-Ray Absorptimetry: Fundamentals, Methodology, and Clinical Applications. Radiologia 2012, 54, 410–423. [Google Scholar] [CrossRef]
- Baim, S.; Binkley, N.; Bilezikian, J.P.; Kendler, D.L.; Hans, D.B.; Lewiecki, E.M.; Silverman, S. Official Positions of the International Society for Clinical Densitometry and Executive Summary of the 2007 ISCD Position Development Conference. J. Clin. Densitom. 2008, 11, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.; Maughan, R.J.; Gleeson, M.; Bilsborough, J.; Jeukendrup, A.; Morton, J.P.; Phillips, S.M.; Armstrong, L.; Burke, L.M.; Close, G.L.; et al. UEFA Expert Group Statement on Nutrition in Elite Football. Current Evidence to Inform Practical Recommendations and Guide Future Research. Br. J. Sports Med. 2021, 55, 416. [Google Scholar] [CrossRef]
- Dallman, J.; Herda, A.; Cleary, C.J.; Morey, T.; Diederich, A.; Vopat, B.G.; Vopat, L.M. A Brief Review of the Literature for Published Dual-Energy X-Ray Absorptiometry Protocols for Athletes. Sports Health 2024, 16, 735–743. [Google Scholar] [CrossRef]
- Ackerman, K.E.; Rogers, M.A.; Heikura, I.A.; Burke, L.M.; Stellingwerff, T.; Hackney, A.C.; Verhagen, E.; Schley, S.; Saville, G.H.; Mountjoy, M.; et al. Methodology for Studying Relative Energy Deficiency in Sport (REDs): A Narrative Review by a Subgroup of the International Olympic Committee (IOC) Consensus on REDs. Br. J. Sports Med. 2023, 57, 1136–1152. [Google Scholar] [CrossRef]
- Poltronieri, T.S.; de Paula, N.S.; Chaves, G.V. Assessing Skeletal Muscle Radiodensity by Computed Tomography: An Integrative Review of the Applied Methodologies. Clin. Physiol. Funct. Imaging 2020, 40, 207–223. [Google Scholar] [CrossRef]
- Bellinger, P.; Bourne, M.N.; Duhig, S.; Lievens, E.; Kennedy, B.; Martin, A.; Cooper, C.; Tredrea, M.; Rice, H.; Derave, W.; et al. Relationships between Lower Limb Muscle Characteristics and Force–Velocity Profiles Derived during Sprinting and Jumping. Med. Sci. Sports Exerc. 2021, 53, 1400–1411. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, T.; Chiba, Y.; Ohnuma, H.; Sugisaki, N. Investigation of Trunk and Pelvis Muscle Activity during Sprinting Using T2-Weighted Magnetic Resonance Imaging. J. Hum. Kinet. 2025, 98, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Kamina, P. Anatomie Clinique, 4th ed.; Maloine: Paris, France, 2009; ISBN 978-2-224-03183-1. [Google Scholar]
- Hughes, P.E.; Hsu, J.C.; Matava, M.J. Hip Anatomy and Biomechanics in the Athlete. Sports Med. Arthrosc. Rev. 2002, 10, 103–114. [Google Scholar] [CrossRef]
- Watanabe, K.; Nunome, H.; Inoue, K.; Iga, T.; Akima, H. Electromyographic Analysis of Hip Adductor Muscles in Soccer Instep and Side-Foot Kicking. Sports Biomech. 2020, 19, 295–306. [Google Scholar] [CrossRef]
- Erlandson, M.C.; Lorbergs, A.L.; Mathur, S.; Cheung, A.M. Muscle Analysis Using pQCT, DXA and MRI. Eur. J. Radiol. 2016, 85, 1505–1511. [Google Scholar] [CrossRef]
- Tanaka, M.; Kanayama, M.; Oha, F.; Shimamura, Y.; Tsujimoto, T.; Hasegawa, Y.; Hashimoto, T.; Nojiri, H.; Ishijima, M. Potential of Whole-Body Dual-Energy X-Ray Absorptiometry to Predict Muscle Size of Psoas Major, Gluteus Maximus and Back Muscles. BMC Musculoskelet. Disord. 2023, 24, 917. [Google Scholar] [CrossRef] [PubMed]
- Neumann, D.A. Kinesiology of the Musculoskeletal System: Foundations for Physical Rehabilitation; Mosby: St. Louis, MO, USA, 2002. [Google Scholar]
- Junge, A.; Dvořák, J. Football Injuries during the 2014 FIFA World Cup. Br. J. Sports Med. 2015, 49, 599–602. [Google Scholar] [CrossRef]
- Cataldi, D.; Bennett, J.P.; Quon, B.K.; Leong, L.; Kelly, T.L.; Binder, A.M.; Evans, W.J.; Prado, C.M.; Heymsfield, S.B.; Shepherd, J.A. Association of Body Composition Measures to Muscle Strength Using DXA, D3Cr, and BIA in Collegiate Athletes. Sci. Rep. 2025, 15, 5839. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.L.E.; García, J.R.; Jiménez-Rubio, S. Return to Performance of a Soccer Player with an Adductor Longus Injury: A Case Report. Medicina 2024, 60, 1998. [Google Scholar] [CrossRef] [PubMed]
- Borga, M.; West, J.; Bell, J.D.; Harvey, N.C.; Romu, T.; Heymsfield, S.B.; Leinhard, O.D. Advanced Body Composition Assessment: From Body Mass Index to Body Composition Profiling. J. Investig. Med. 2018, 66, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hooijmans, M.T.; Schlaffke, L.; Bolsterlee, B.; Schlaeger, S.; Marty, B.; Mazzoli, V. Compositional and Functional MRI of Skeletal Muscle: A Review. J. Magn. Reson. Imaging 2024, 60, 860–877. [Google Scholar] [CrossRef]
- Thorborg, K.; Serner, A.; Petersen, J.; Madsen, T.M.; Magnusson, P.; Hölmich, P. Hip Adduction and Abduction Strength Profiles in Elite Soccer Players: Implications for Clinical Evaluation of Hip Adductor Muscle Recovery after Injury. Am. J. Sports Med. 2011, 39, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Dupré, T.; Potthast, W. Are Sprint Accelerations Related to Groin Injuries? A Biomechanical Analysis of Adolescent Soccer Players. Sports Biomech. 2024, 23, 3564–3576. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Izquierdo, T.; Vidal-Aragón, G.; Calderón-Corrales, P.; Acuña, Á.; Achalandabaso-Ochoa, A.; Aibar-Almazán, A.; Martínez-Amat, A.; Pecos-Martín, D. Effects of a Gluteal Muscles Specific Exercise Program on the Vertical Jump. Int. J. Environ. Res. Public Health 2020, 17, 5383. [Google Scholar] [CrossRef] [PubMed]
- Omi, Y.; Sugimoto, D.; Kuriyama, S.; Kurihara, T.; Miyamoto, K.; Yun, S.; Kawashima, T.; Hirose, N. Effect of Hip-Focused Injury Prevention Training for Anterior Cruciate Ligament Injury Reduction in Female Basketball Players: A 12-Year Prospective Intervention Study. Am. J. Sports Med. 2018, 46, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Collings, T.J.; Bourne, M.N.; Barrett, R.S.; Meinders, E.; Gonçalves, B.A.M.; Shield, A.J.; Diamond, L.E. Gluteal Muscle Forces during Hip-Focused Injury Prevention and Rehabilitation Exercises. Med. Sci. Sports Exerc. 2023, 55, 650–660. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.B.; Vilarinho, L.G.; Lobato, D.F.M.; Dionisio, V.C. Role of Gluteus Maximus and Medius Activation in the Lower Limb Biomechanical Control during Functional Single-Leg Tasks: A Systematic Review. Knee 2023, 43, 163–175. [Google Scholar] [CrossRef]
- Ceballos-Laita, L.; Carrasco-Uribarren, A.; Cabanillas-Barea, S.; Pérez-Guillén, S.; Medrano-de-la-Fuente, R.; Hernando-Garijo, I.; Jiménez-del-Barrio, S. Relationship between Hip Abductor Muscle Strength and Frontal Plane Kinematics: A Cross-Sectional Study in Elite Handball Athletes. Appl. Sci. 2022, 12, 10044. [Google Scholar] [CrossRef]
- Charnock, B.L.; Lewis, C.L.; Garrett, W.E.; Queen, R.M. Adductor Longus Mechanics during the Maximal Effort Soccer Kick. Sports Biomech. 2009, 8, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Murrell, G.A.C.; Knapman, P. Adductor Strain and Hip Range of Movement in Male Professional Soccer Players. J. Orthop. Surg. 2007, 15, 46–49. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.P.; Nicholas, S.J.; Tyler, T.F. Adductor Strains in Athletes. Int. J. Sports Phys. Ther. 2023, 18, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Semciw, A.; Neate, R.; Pizzari, T. Running Related Gluteus Medius Function in Health and Injury: A Systematic Review with Meta-Analysis. J. Electromyogr. Kinesiol. 2016, 30, 98–110. [Google Scholar] [CrossRef]
- Nunes, G.S.; Pizzari, T.; Neate, R.; Barton, C.J.; Semciw, A. Gluteal Muscle Activity during Running in Asymptomatic People. Gait Posture 2020, 80, 268–273. [Google Scholar] [CrossRef]
- Waldén, M.; Hägglund, M.; Ekstrand, J. The Epidemiology of Groin Injury in Senior Football: A Systematic Review of Prospective Studies. Br. J. Sports Med. 2015, 49, 792–797. [Google Scholar] [CrossRef]
- Mosler, A.B.; Weir, A.; Eirale, C.; Farooq, A.; Thorborg, K.; Whiteley, R.J.; Hölmich, P.; Crossley, K.M. Epidemiology of Time Loss Groin Injuries in a Men’s Professional Football League: A 2-Year Prospective Study of 17 Clubs and 606 Players. Br. J. Sports Med. 2018, 52, 292–297. [Google Scholar] [CrossRef]
- Powers, C.M. The Influence of Abnormal Hip Mechanics on Knee Injury: A Biomechanical Perspective. J. Orthop. Sports Phys. Ther. 2010, 40, 42–51. [Google Scholar] [CrossRef]
- Burkett, L.N. Causative Factors in Hamstring Strains. Med. Sci. Sports 1970, 2, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Croisier, J.L.; Crielaard, J.M. Hamstring Muscle Tear with Recurrent Complaints: An Isokinetic Profile. Isokinet. Exerc. Sci. 2000, 8, 175–180. [Google Scholar] [CrossRef]
- Croisier, J.L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.-M. Strength Imbalances and Prevention of Hamstring Injury in Professional Soccer Players: A Prospective Study. Am. J. Sports Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef]
- Cheung, R.T.H.; Smith, A.W.; Wong, D.P. H:Q Ratios and Bilateral Leg Strength in College Field and Court Sports Players. J. Hum. Kinet. 2012, 33, 63–71. [Google Scholar] [CrossRef]
- Carvalho, A.; Brown, S.; Abade, E. Evaluating Injury Risk in First and Second League Professional Portuguese Soccer: Muscular Strength and Asymmetry. J. Hum. Kinet. 2016, 51, 19–26. [Google Scholar] [CrossRef]
- Moreno-Pérez, V.; Beato, M.; Del Coso, J.; Hernández-Davó, J.L.; Soler, A.; Peñaranda-Moraga, M.; Madruga-Parera, M.; Romero-Rodríguez, D. Intra and Inter-Tester Reliability of a Novel Device to Assess Gluteal Muscle Strength in Professional Football Players. Res. Sports Med. 2022, 30, 156–168. [Google Scholar] [CrossRef]
- Widler, K.S.; Glatthorn, J.F.; Bizzini, M.; Impellizzeri, F.M.; Munzinger, U.; Leunig, M.; Maffiuletti, N.A. Assessment of Hip Abductor Muscle Strength. A Validity and Reliability Study. J. Bone Jt. Surg. 2009, 91, 2666–2672. [Google Scholar] [CrossRef] [PubMed]
- Vaillancourt, N.; Montpetit, C.; Carile, V.; Fortin, M. DEXA Body Composition Asymmetry Analysis and Association to Injury Risk and Low Back Pain in University Soccer Players. Int. J. Environ. Res. Public Health 2024, 21, 559. [Google Scholar] [CrossRef] [PubMed]
- Delvaux, F.; Rochcongar, P.; Bruyère, O.; Bourlet, G.; Daniel, C.; Diverse, P.; Reginster, J.-Y.; Croisier, J.-L. Return-to-Play Criteria after Hamstring Injury: Actual Medicine Practice in Professional Soccer Teams. Br. J. Sports Med. 2013, 47, e3. [Google Scholar] [CrossRef]
- Buck, A.N.; Moore, S.R.; Smith-Ryan, A.E.; Schwartz, T.A.; Nelson, A.E.; Davis-Wilson, H.; Blackburn, J.T.; Pietrosimone, B. Body Composition, Not Body Mass Index, Is Associated with Clinical Outcomes Following ACL Reconstruction. Med. Sci. Sports Exerc. 2025, 57, 1309–1318. [Google Scholar] [CrossRef] [PubMed]
Total | Operators | |||
---|---|---|---|---|
1 | 2 | 3 | ||
Total (N = 120) † | 10.528 (1.47) | 10.588 (1.47) | 10.516 (1.48) | 10.479 (1.50) |
Standard method (N = 60) † | 9.203 (0.63) | 9.281 (0.62) | 9.196 (0.65) | 9.132 (0.64) |
New method (N = 60) † | 11.852 (0.64) | 11.895 (0.66) | 11.835 (0.63) | 11.825 (0.65) |
Degrees of Freedom | Sum of Squares | Mean Squares | F Value | Pr (>F) | |
---|---|---|---|---|---|
Total (N = 120) | |||||
Method | 1 | 210.410 | 210.410 | 509.518 | <0.001 |
Operator | 2 | 0.247 | 0.123 | 0.299 | 0.742 |
Method: operator | 2 | 0.032 | 0.016 | 0.039 | 0.962 |
Residuals | 114 | 47.077 | 0.413 | ||
Standard method (N = 60) | |||||
Operator | 2 | 0.222 | 0.111 | 0.272 | 0.763 |
Residuals | 57 | 23.245 | 0.408 | ||
New method (N = 60) | |||||
Operator | 2 | 0.057 | 0.029 | 0.069 | 0.934 |
Residuals | 57 | 23.832 | 0.418 |
Method | Type | ICC | 95% CI |
---|---|---|---|
Standard | Agreement | 0.949 | [0.881; 0.979] |
Consistency | 0.960 | [0.918; 0.983] | |
New method | Agreement | 0.977 | [0.951; 0.990] |
Consistency | 0.979 | [0.957; 0.991] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evrard, C.; Blaess, J.; Goetsch, T.; Fellous, E.; Pietra, F.; Meyer, A.; Giannini, M.; Geny, B. Appendicular Lean Mass Index Using Dual-Energy X-Ray Absorptiometry (DEXA) in Professional Football: A Pilot Study of a New Method for Improved Inter-Operator Reproducibility and Analysis of Pelvi-Trochanteric Muscles. Sports 2025, 13, 285. https://doi.org/10.3390/sports13090285
Evrard C, Blaess J, Goetsch T, Fellous E, Pietra F, Meyer A, Giannini M, Geny B. Appendicular Lean Mass Index Using Dual-Energy X-Ray Absorptiometry (DEXA) in Professional Football: A Pilot Study of a New Method for Improved Inter-Operator Reproducibility and Analysis of Pelvi-Trochanteric Muscles. Sports. 2025; 13(9):285. https://doi.org/10.3390/sports13090285
Chicago/Turabian StyleEvrard, Charles, Julien Blaess, Thibaut Goetsch, Etienne Fellous, Francois Pietra, Alain Meyer, Margherita Giannini, and Bernard Geny. 2025. "Appendicular Lean Mass Index Using Dual-Energy X-Ray Absorptiometry (DEXA) in Professional Football: A Pilot Study of a New Method for Improved Inter-Operator Reproducibility and Analysis of Pelvi-Trochanteric Muscles" Sports 13, no. 9: 285. https://doi.org/10.3390/sports13090285
APA StyleEvrard, C., Blaess, J., Goetsch, T., Fellous, E., Pietra, F., Meyer, A., Giannini, M., & Geny, B. (2025). Appendicular Lean Mass Index Using Dual-Energy X-Ray Absorptiometry (DEXA) in Professional Football: A Pilot Study of a New Method for Improved Inter-Operator Reproducibility and Analysis of Pelvi-Trochanteric Muscles. Sports, 13(9), 285. https://doi.org/10.3390/sports13090285