Stretching Before Resistance Training as a Strategy to Improve Stair Descent Performance in Older Women
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Training Protocol
2.3.1. Warm-Up
2.3.2. Progressive Resistance Training
2.3.3. Cool-Down
2.4. Measures
2.4.1. Preliminary Assessments
2.4.2. Functional Tests
2.4.3. Ankle Motion Analysis
2.4.4. Rating Perceived Exertion (RPE)
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Functional Tests
3.3. Ankle Motion Analysis
3.4. Rating of Perceived Exertion
4. Discussion
4.1. Functional Performance and Strength Outcomes
4.2. Ankle Motion Analysis
4.3. Perceived Exertion and Adherence
4.3.1. Limitations and Future Directions
4.3.2. Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alcazar, J.; Kamper, R.S.; Aagaard, P.; Haddock, B.; Prescott, E.; Ara, I.; Suetta, C. Relation between leg extension power and 30-s sit-to-stand muscle power in older adults: Validation and translation to functional performance. Sci. Rep. 2020, 10, 16337. [Google Scholar] [CrossRef] [PubMed]
- Holland, G.J.; Tanaka, K.; Shigematsu, R.; Nakagaichi, M. Flexibility and Physical Funcitons of Older Adults: A Review. J. Aging Phys. Act. 2002, 10, 169–206. [Google Scholar] [CrossRef]
- Barry, B.K.; Carson, R.G. The consequences of resistance training for movement control in older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2004, 59, 730–754. [Google Scholar] [CrossRef] [PubMed]
- La Greca, S.; Rapali, M.; Ciaprini, G.; Russo, L.; Vinciguerra, M.G.; Di Giminiani, R. Acute and Chronic Effects of Supervised Flexibility Training in Older Adults: A Comparison of Two Different Conditioning Programs. Int. J. Environ. Res. Public Health 2022, 19, 16974. [Google Scholar] [CrossRef]
- Heath, E.H. ACSM’s Guidelines for Exercise Testing and Prescription. Med. Sci. Sports Exerc. 2009, 37, 2018. [Google Scholar] [CrossRef]
- Cristopoliski, F.; Barela, J.A.; Leite, N.; Fowler, N.E.; Rodacki, A.L.F. Stretching exercise program improves gait in the elderly. Gerontology 2009, 55, 614–620. [Google Scholar] [CrossRef]
- Buckley, J.G.; Cooper, G.; Maganaris, C.N.; Reeves, N.D. Is stair descent in the elderly associated with periods of high centre of mass downward accelerations? Exp. Gerontol. 2013, 48, 283–289. [Google Scholar] [CrossRef]
- Gavin, J.P.; Reeves, N.D.; Jones, D.A.; Roys, M.; Buckley, J.G.; Baltzopoulos, V.; Maganaris, C.N. Combined resistance and stretching exercise training benefits stair descent biomechanics in older adults. Front. Physiol. 2019, 10, 873. [Google Scholar] [CrossRef]
- Reeves, N.D.; Spanjaard, M.; Mohagheghi, A.A.; Baltzopoulos, V.; Maganaris, C.N. The demands of stair descent relative to maximum capacities in elderly and young adults. J. Electromyogr. Kinesiol. 2008, 18, 218–227. [Google Scholar] [CrossRef]
- Bosse, I.; Oberländer, K.D.; Savelberg, H.H.; Meijer, K.; Brüggemann, G.P.; Karamanidis, K. Dynamic stability control in younger and older adults during stair descent. Hum. Mov. Sci. 2012, 31, 1560–1570. [Google Scholar] [CrossRef] [PubMed]
- Hamel, K.A.; Cavanagh, P.R. Stair Performance in People Aged 75 and Older. J. Am. Geriatr. Soc. 2004, 52, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Chou, L.S. Balance control during stair negotiation in older adults. J. Biomech. 2007, 40, 2530–2536. [Google Scholar] [CrossRef] [PubMed]
- Kováčiková, Z.; Sarvestan, J.; Zemková, E. Age-related differences in stair descent balance control: Are women more prone to falls than men? PLoS ONE 2021, 16, e0244990. [Google Scholar] [CrossRef] [PubMed]
- Feland, J.B.; Myrer, J.W.; Schulthies, S.S.; Fellingham, G.W.; Measom, G.W. The effect of duration of stretching of the hamstring muscle group for increasing range of motion in people aged 65 years or older. Phys. Ther. 2001, 81, 1110–1117. [Google Scholar] [CrossRef]
- Stojanović, M.D.M.; Mikić, M.; Milošević, Z.; Vuković, J.; Jezdimirović, T.; Vučetić, V. Effects of chair-based, low–load elastic band resistance training on functional fitness and metabolic biomarkers in older women. J. Sports Sci. Med. 2021, 20, 133–141. [Google Scholar] [CrossRef]
- O’Bryan, S.J.; Giuliano, C.; Woessner, M.N.; Vogrin, S.; Smith, C.; Duque, G.; Levinger, I. Progressive Resistance Training for Concomitant Increases in Muscle Strength and Bone Mineral Density in Older Adults: A Systematic Review and Meta-Analysis. Sports Med. 2022, 52, 1939–1960. [Google Scholar] [CrossRef]
- Ferrando, V.; Mirabelli, F.; Panascì, M.; Sofrà, D.; Ruggeri, P.; Faelli, E.; Bisio, A. Effects of High-Intensity Progressive Resistance Training Combined with Self-Talk on Muscle Strength and Functional Performance in Older Adults. J. Strength Cond. Res. 2025, 39, 736–744. [Google Scholar] [CrossRef]
- Safons, M.P.; de Lima, M.S.N.; Gonçalves, K.F.L.; de Souza Junior, G.A.; Barreto, T.L.C.; Oliveira, A.J.S.; Ribeiro, A.L.A.; dos Santos Couto Paz, C.C.; Gentil, P.; Bottaro, M.; et al. Effects of Resistance Training with Machines and Elastic Tubes on Functional Capacity and Muscle Strength in Community-Living Older Women: A Randomized Clinical Trial. J. Aging Phys. Act. 2021, 29, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.; Santarém, J.; Filho, W.; de Fátima Nunes Marucci, M. Effects of Resistance Training on the Sit-and-Reach Test in Elderly Women. J. Strength Cond. Res. 2002, 16, 14–18. [Google Scholar] [CrossRef]
- Li, S.; Wang, L.; Xiong, J.; Xiao, D. Gender-Specific Effects of 8-Week Multi-Modal Strength and Flexibility Training on Hamstring Flexibility and Strength. Int. J. Environ. Res. Public Health 2022, 19, 15256. [Google Scholar] [CrossRef]
- Souza, D.; Barbalho, M.; Vieira, C.A.; Martins, W.R.; Cadore, E.L.; Gentil, P. Minimal dose resistance training with elastic tubes promotes functional and cardiovascular benefits to older women. Exp. Gerontol. 2019, 115, 132–138. [Google Scholar] [CrossRef]
- de Liao, C.; Tsauo, J.Y.; Huang, S.W.; Ku, J.W.; Hsiao, D.J.; Liou, T.H. Effects of elastic band exercise on lean mass and physical capacity in older women with sarcopenic obesity: A randomized controlled trial. Sci. Rep. 2018, 8, 2317. [Google Scholar] [CrossRef]
- Behm, D.G.; Blazevich, A.J.; Kay, A.D.; McHugh, M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Appl. Physiol. Nutr. Metab. 2016, 41, 1–11. [Google Scholar] [CrossRef]
- Battaglia, G.; Bellafiore, M.; Caramazza, G.; Paoli, A.; Bianco, A.; Palma, A. Changes in spinal range of motion after a flexibility training program in elderly women. Clin. Interv. Aging 2014, 9, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Yokoyama, M.; Hanawa, H.; Miyazawa, T.; Hirata, K.; Onitsuka, K.; Fujino, T.; Kanemura, N. Muscle co-activation in the elderly contributes to control of hip and knee joint torque and endpoint force. Sci. Rep. 2023, 13, 7139. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.S.; Lin, J.H.; Chen, S.C.; Chien, K.Y. Effects of dynamic stretching with different loads on hip joint range of motion in the elderly. J. Sports Sci. Med. 2019, 18, 52–57. [Google Scholar] [PubMed]
- Guissard, N.; Duchateau, J. Effect of static stretch training on neural and mechanical properties of the human plantar-flexor muscles. Muscle Nerve 2004, 29, 248–255. [Google Scholar] [CrossRef]
- Reeves, N.D.; Spanjaard, M.; Mohagheghi, A.A.; Baltzopoulos, V.; Maganaris, C.N. Influence of light handrail use on the biomechanics of stair negotiation in old age. Gait Posture 2008, 28, 327–336. [Google Scholar] [CrossRef]
- Reeves, N.D.; Spanjaard, M.; Mohagheghi, A.A.; Baltzopoulos, V.; Maganaris, C.N. Older adults employ alternative strategies to operate within their maximum capabilities when ascending stairs. J. Electromyogr. Kinesiol. 2009, 19, e57–e68. [Google Scholar] [CrossRef]
- Thomas, E.; Bianco, A.; Paoli, A.; Palma, A. The Relation between Stretching Typology and Stretching Duration: The Effects on Range of Motion. Int. J. Sports Med. 2018, 39, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Chaouachi, A. A review of the acute effects of static and dynamic stretching on performance. Eur. J. Appl. Physiol. 2011, 111, 2633–2651. [Google Scholar] [CrossRef] [PubMed]
- Opplert, J.; Babault, N. Acute Effects of Dynamic Stretching on Muscle Flexibility and Performance: An Analysis of the Current Literature. Sports Med. 2018, 48, 299–325. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Baumgartner, R.N.; Ross, R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J. Appl. Physiol. 2000, 89, 465–471. [Google Scholar] [CrossRef]
- Piastra, G.; Perasso, L.; Lucarini, S.; Monacelli, F.; Bisio, A.; Ferrando, V.; Gallamini, M.; Faelli, E.; Ruggeri, P. Effects of two types of 9-month adapted physical activity program on muscle mass, muscle strength, and balance in moderate sarcopenic older women. BioMed Res. Int. 2018, 2018, 5095673. [Google Scholar] [CrossRef]
- Panascì, M.; Ferrando, V.; Bisio, A.; Filipas, L.; Gennaro, S.D.; Puce, L.; Ruggeri, P.; Faelli, E. Moderate-Duration Dynamic Stretching During Warm-up Improves Running Economy and Running Performance in Recreational Distance Runners. Int. J. Sports Physiol. Perform. 2025, 20, 99–108. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, H.Y. Effects of combined hip exercise and passive stretching on muscle stiffness, pain perception and pain-related disability, and physical function in older adults with low back pain. Phys. Act. Nutr. 2022, 26, 16–24. [Google Scholar] [CrossRef]
- Colado, J.C.; Garcia-Masso, X.; Pellicer, M.; Alakhdar, Y.; Benavent, J.; Cabeza-Ruiz, R. A comparison of elastic tubing and isotonic resistance exercises. Int. J. Sports Med. 2010, 31, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Roig, M.; MacIntyre, D.L.; Eng, J.J.; Narici, M.V.; Maganaris, C.N.; Reid, W.D. Preservation of eccentric strength in older adults: Evidence, mechanisms and implications for training and rehabilitation. Exp. Gerontol. 2010, 45, 400–409. [Google Scholar] [CrossRef]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998; p. 111. [Google Scholar]
- Webber, S.C.; Porter, M.M. Effect of a Supervised Stretching Program on Neck, Shoulder, and Trunk Range of Motion in Older Women. Can. J. Aging 2022, 41, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef]
- Zadravec, M.; Olenšek, A.; Rudolf, M.; Bizovičar, N.; Goljar, N.; Matjačić, Z. Assessment of dynamic balancing responses following perturbations during slow walking in relation to clinical outcome measures for high-functioning post-stroke subjects. J. Neuroeng. Rehabil. 2020, 17, 85. [Google Scholar] [CrossRef]
- Lavín-Pérez, A.M.; León-Llamas, J.L.; Salas Costilla, F.J.; Collado-Mateo, D.; López de las Heras, R.; Gasque Celma, P.; Villafaina, S. Validity of On-Line Supervised Fitness Tests in People with Low Back Pain. Healthcare 2023, 11, 1019. [Google Scholar] [CrossRef]
- Alsamir Tibana, R.; Manuel Frade de Sousa, N.; Prestes, J.; da Cunha Nascimento, D.; Ernesto, C.; Falk Neto, J.; Kennedy, M.; Azevedo Voltarelli, F. Is Perceived Exertion a Useful Indicator of the Metabolic and Cardiovascular Responses to a Metabolic Conditioning Session of Functional Fitness? Sports 2019, 7, 161. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, R.D.; Mazzo, M.R.; Feeney, D.F. Rethinking the Statistical Analysis of Neuromechanical Data. Exerc. Sport Sci. Rev. 2023, 51, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Burd, N.A.; Andrews, R.J.; West, D.W.D.; Little, J.P.; Cochran, A.J.R.; Hector, A.J.; Cashaback, J.G.A.; Gibala, M.J.; Potvin, J.R.; Baker, S.K.; et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J. Physiol. 2012, 590, 351–362. [Google Scholar] [CrossRef]
- Lempke, L.; Wilkinson, R.; Murray, C.; Stanek, J. The effectiveness of PNF versus static stretching on increasing hip-flexion range of motion. J. Sport Rehabil. 2018, 27, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Hirata, K.; Yamadera, R.; Akagi, R. Can Static Stretching Reduce Stiffness of the Triceps Surae in Older Men? Med. Sci. Sports Exerc. 2020, 52, 673–679. [Google Scholar] [CrossRef]
- Freitas, S.R.; Mendes, B.; Le Sant, G.; Andrade, R.J.; Nordez, A.; Milanovic, Z. Can chronic stretching change the muscle-tendon mechanical properties? A review. Scand. J. Med. Sci. Sports 2018, 28, 794–806. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the Probability for Falls in Community-Dwelling Older Adults Using the Timed Up & Go Test. Phys. Ther. 2000, 80, 897–903. [Google Scholar] [CrossRef]
- Maddigan, M.E.; Peach, A.A.; Behm, D.G. A comparison of assisted and unassisted proprioceptive neuromuscular facilitation techniques and static stretching. J. Strength Cond. Res. 2012, 26, 1238–1244. [Google Scholar] [CrossRef]
- Menz, H.B.; Lord, S.R.; Fitzpatrick, R.C. Age-related differences in walking stability. Age Ageing 2003, 32, 137–142. [Google Scholar] [CrossRef]
- Chen, M.J.; Fan, X.; Moe, S.T. Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: A meta-analysis. J. Sports Sci. 2002, 20, 873–899. [Google Scholar] [CrossRef] [PubMed]
- Kay, A.D.; Blazevich, A.J. Effect of acute static stretch on maximal muscle performance: A systematic review. Med. Sci. Sports Exerc. 2012, 44, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Bonato, M.; Marmondi, F.; Mastropaolo, C.; Inzaghi, C.; Cerizza, C.; Galli, L.; Banfi, G.; Cinque, P. A Digital Platform for Home-Based Exercise Prescription for Older People with Sarcopenia. Sensors 2024, 24, 4788. [Google Scholar] [CrossRef] [PubMed]
DS (n = 8) | SS (n = 8) | CG (n = 8) | p-Values | |
---|---|---|---|---|
Height (m) | 159.62 ± 2.88 | 157.37 ± 2.32 | 160.75 ± 2.25 | n.s. |
Body Mass (kg) | 65.67 ± 7.39 | 63.11 ± 3.61 | 66.32 ± 2.93 | n.s. |
BMI (kg/m2) | 25.88 ± 2.19 | 26.56 ± 1.37 | 27.38 ± 1.22 | n.s. |
Skeletal muscle mass (kg) | 40.48 ± 2.45 | 39.33 ± 1.24 | 41.51 ± 1.05 | n.s. |
HGS (kg) | 17.98 ± 0.80 | 17.96 ± 0.75 | 17.98 ± 0.78 | n.s. |
DS | SS | CG | ||||
---|---|---|---|---|---|---|
PRE | POST | PRE | POST | PRE | POST | |
Functional tests | ||||||
30s-CS (reps) | 11.88 ± 1.35 (10.94, 12.80) | 13.00 ± 1.19 (12.06, 13.93) | 12.00 ± 0.53 (11.06, 12.93) | 13.25 ± 1.98 (12.32, 14.18) | 11.62 ± 1.19 (10.95, 12.55) | 11.88 ± 1.12 (10.94, 12.80) |
TUG (s) | 7.93 ± 0.35 (7.59, 8.28) | 7.75 ± 0.27 (7.41, 8.09) | 8.03 ± 0.48 (7.69, 8.38) | 7.88 ± 0.45 (7.54, 8.22) | 8.01 ± 0.62 (6.67, 8.36) | 8.02 ±0.57 (7.69, 8.38) |
CSR right leg (cm) | 2.25 ±6.36 (−2.43, 6.93) | 0.25 ± 0.71 (−4.43, 4.93) | −8.12 ± 8.93 (−12.8, −3.45) | −0.75 ± 1.49 (−5.43, 3.93) | 1.79 ± 6.94 (−2.89, 6.46) | 4.00 ± 9.14 (−0.68, 8.68) |
CSR left leg (cm) | 1.88 ±5.30 (−2.81, 6.56) | 0.00 ± 0.11 (−4.68, 4.67) | −10.88 ± 10.75 (−15.5, −6.19) | −2.25 ± 6.36 (−6.93, 2.43) | 4.25 ± 4.62 (−0.43, 8.93) | 3.75 ± 6.94 (−0.93, 8.43) |
Ankle motion analysis | ||||||
Initial foot contact (°) | 133.68 ± 4.51 (128.64, 138.71] | 135.14 ± 4.84 (130.10, 140.17) | 136.58 ± 5.95 (131.64, 141.60) | 138.06 ± 6.33 (133.02, 143.09) | 132.6 ± 10.22 (127.57, 137.63) | 135.16 ± 8.02 (130.12, 140.19) |
Single support (°) | 107.66 ± 5.68 (102.38, 112.94) | 109.96 ± 5.60 (104.68, 115.24) | 111.9 ± 8.75 (106.62, 117.18) | 115.54 ± 10.34 (110.25, 120.82) | 110.42 ± 6.59 (105.14, 115.70) | 113.52 ± 5.59 (108.24, 118.8) |
Final foot contact (°) | 83.80 ± 8.90 (77.37, 90.23) | 83.31 ± 7.19 (76.88, 89.74) | 85.80 ± 7.44 (79.37, 92.23) | 94.41 ± 11.78 (87.98, 100.84) | 87.00 ± 9.72 (80.57, 93.43) | 87.30 ± 7.28 (80.91, 93.77) |
Single support duration (s) | 1.72 ± 0.44 (1.45, 1.98) | 1.58 ± 0.20 (1.31, 1.84) | 1.92 ± 0.24 (1.66, 2.19) | 2.04 ± 0.52 (1.77, 2.31) | 1.78 ± 0.42 (1.52, 2.05) | 2.04 ± 0.28 (1.77, 2.30) |
DS | SS | CG | |
---|---|---|---|
RPE at 1st week | |||
POSTwarm-up | 2.62 ± 0.52 (2.36, 2.88) | 2.56 ± 0.32 (2.30, 2.82) | 2.62 ± 0.23 (2.36, 2.88) |
POSTexercise | 4.62 ± 0.52 (3.99, 5.25) | 4.81 ± 0.26 (4.19, 5.44) | 6.50 ± 0.53 (5.87, 7.12) |
RPE at 2nd week | |||
POSTwarm-up | 2.50 ± 0.53 (2.24, 2.76) | 2.56 ± 0.32 (2.30, 2.82) | 2.68 ± 0.26 (2.42, 2.95) |
POSTexercise | 4.38 ± 0.44 (3.75, 5.00) | 4.62 ± 0.35 (4.00, 5.25) | 6.12 ± 0.35 (5.50, 6.75) |
RPE at 3rd week | |||
POSTwarm-up | 2.56 ± 0.42 (2.30, 2.82) | 2.50 ± 0.29 (2.24, 2.76) | 2.56 ± 0.32 (2.3, 2.82) |
POSTexercise | 5.50 ± 0.53 (4.87, 6.13) | 5.94 ± 0.32 (5.31, 6.56) | 7.31 ± 0.26 (6.69, 7.94) |
RPE at 4th week | |||
POSTwarm-up | 2.56 ± 0.42 (2.30, 2.82) | 2.50 ± 0.25 (2.24, 2.76) | 2.62 ± 0.23 (2.36, 2.88) |
POSTexercise | 5.31 ± 0.37 (4.69, 5.94) | 5.56 ± 0.49 (4.94, 6.19) | 7.12 ± 0.23 (6.49, 7.75) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrando, V.; Panascì, M.; Bisio, A.; Chiarotti, V.; Marmondi, F.; Bonato, M.; Ruggeri, P.; Faelli, E. Stretching Before Resistance Training as a Strategy to Improve Stair Descent Performance in Older Women. Sports 2025, 13, 276. https://doi.org/10.3390/sports13080276
Ferrando V, Panascì M, Bisio A, Chiarotti V, Marmondi F, Bonato M, Ruggeri P, Faelli E. Stretching Before Resistance Training as a Strategy to Improve Stair Descent Performance in Older Women. Sports. 2025; 13(8):276. https://doi.org/10.3390/sports13080276
Chicago/Turabian StyleFerrando, Vittoria, Marco Panascì, Ambra Bisio, Valentina Chiarotti, Federica Marmondi, Matteo Bonato, Piero Ruggeri, and Emanuela Faelli. 2025. "Stretching Before Resistance Training as a Strategy to Improve Stair Descent Performance in Older Women" Sports 13, no. 8: 276. https://doi.org/10.3390/sports13080276
APA StyleFerrando, V., Panascì, M., Bisio, A., Chiarotti, V., Marmondi, F., Bonato, M., Ruggeri, P., & Faelli, E. (2025). Stretching Before Resistance Training as a Strategy to Improve Stair Descent Performance in Older Women. Sports, 13(8), 276. https://doi.org/10.3390/sports13080276