Social Cognitive Theory and Physical Activity: Examining Gender-Based Prediction Patterns and Theoretical Validity
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Procedure
2.4. Data Analyses
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SCT | Social Cognitive Theory |
SEM | Structural Equation Model |
References
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1986; ISBN 978-0-13-815614-5. [Google Scholar]
- Bandura, A. Health Promotion by Social Cognitive Means. Health Educ. Behav. 2004, 31, 143–164. [Google Scholar] [CrossRef]
- Egele, V.S.; Klopp, E.; Stark, R. How Valid Is Bandura’s Social Cognitive Theory to Explain Physical Activity Behavior? Eur. J. Investig. Health Psychol. Educ. 2025, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Health Promotion from the Perspective of Social Cognitive Theory. In Understanding and Changing Health Behaviour: From Health Beliefs to Self-Regulation; Norman, P., Abraham, C., Conner, M., Eds.; Harwood Academic Publishers: Amsterdam, The Netherlands, 2000; p. 339. ISBN 978-90-5823-073-7. [Google Scholar]
- Auster-Gussman, L.A.; Gavin, K.L.; Siddique, J.; Welch, W.A.; Solk, P.; Whitaker, M.; Cullather, E.; Fanning, J.; Maria, C.S.; Gradishar, W.; et al. Social Cognitive Variables and Physical Activity during Chemotherapy for Breast Cancer: An Intensive Longitudinal Examination. Psycho-Oncology 2022, 31, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Baird, J.F.; Silveira, S.L.; Motl, R.W. Social Cognitive Theory and Physical Activity in Older Adults with Multiple Sclerosis. Int. J. MS Care 2021, 23, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, M.R.; Crawford, K.L.; Jackson, B. Social Cognitive Theory and Physical Activity: Mechanisms of Behavior Change, Critique, and Legacy. Psychol. Sport Exerc. 2019, 42, 110–117. [Google Scholar] [CrossRef]
- Sebastian, A.T.; Rajkumar, E.; Tejaswini, P.; Lakshmi, R.; Romate, J. Applying Social Cognitive Theory to Predict Physical Activity and Dietary Behavior among Patients with Type-2 Diabetes. Health Psychol. Res. 2021, 9, 24510. [Google Scholar] [CrossRef]
- Young, M.D.; Plotnikoff, R.C.; Collins, C.E.; Callister, R.; Morgan, P.J. Social Cognitive Theory and Physical Activity: A Systematic Review and Meta-Analysis. Obes. Rev. 2014, 15, 983–995. [Google Scholar] [CrossRef]
- Silveira, S.L.; Motl, R.W. Do Social Cognitive Theory Constructs Explain Response Heterogeneity with a Physical Activity Behavioral Intervention in Multiple Sclerosis? Contemp. Clin. Trials Commun. 2019, 15, 100366. [Google Scholar] [CrossRef]
- Zechner, M.R.; Gill, K.J. Predictors of Physical Activity in Persons with Mental Illness: Testing a Social Cognitive Model. Psychiatr. Rehabil. J. 2016, 39, 321–327. [Google Scholar] [CrossRef]
- Stacey, F.G.; James, E.L.; Chapman, K.; Courneya, K.S.; Lubans, D.R. A Systematic Review and Meta-Analysis of Social Cognitive Theory-Based Physical Activity and/or Nutrition Behavior Change Interventions for Cancer Survivors. J. Cancer Surviv. 2015, 9, 305–338. [Google Scholar] [CrossRef]
- Young, M.D.; Plotnikoff, R.C.; Collins, C.E.; Callister, R.; Morgan, P.J. A Test of Social Cognitive Theory to Explain Men’s Physical Activity During a Gender-Tailored Weight Loss Program. Am. J. Men’s Health 2016, 10, NP176–NP187. [Google Scholar] [CrossRef]
- Neal, W.N.; Pekmezi, D.; Motl, R.W. Physical Activity Levels and Social Cognitive Theory Correlates among Adults with Crohn’s Disease: Preliminary Results from a Cross-Sectional Analysis. Int J Environ Res Public Health 2024, 21, 462. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide Trends in Insufficient Physical Activity from 2001 to 2016: A Pooled Analysis of 358 Population-Based Surveys with 1·9 Million Participants. The Lancet Global Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef] [PubMed]
- Strain, T.; Flaxman, S.; Guthold, R.; Semenova, E.; Cowan, M.; Riley, L.M.; Bull, F.C.; Stevens, G.A.; Abdul Raheem, R.; Agoudavi, K.; et al. National, Regional, and Global Trends in Insufficient Physical Activity among Adults from 2000 to 2022: A Pooled Analysis of 507 Population-Based Surveys with 5·7 Million Participants. Lancet Glob. Health 2024, 12, e1232–e1243. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Campesi, I.; Franconi, F.; Serra, P.A. The Appropriateness of Medical Devices Is Strongly Influenced by Sex and Gender. Life 2024, 14, 234. [Google Scholar] [CrossRef]
- Choi, J.; Lee, M.; Lee, J.; Kang, D.; Choi, J.-Y. Correlates Associated with Participation in Physical Activity among Adults: A Systematic Review of Reviews and Update. BMC Public Health 2017, 17, 356. [Google Scholar] [CrossRef]
- Robbins, L.B.; Pender, N.J.; Ronis, D.L.; Kazanis, A.S.; Pis, M.B. Physical Activity, Self-efficacy, and Perceived Exertion among Adolescents. Res. Nurs. Health 2004, 27, 435–446. [Google Scholar] [CrossRef]
- Spence, J.C.; Blanchard, C.M.; Clark, M.; Plotnikoff, R.C.; Storey, K.E.; McCargar, L. The Role of Self-Efficacy in Explaining Gender Differences in Physical Activity Among Adolescents: A Multilevel Analysis. J. Phys. Act. Health 2010, 7, 176–183. [Google Scholar] [CrossRef]
- Anderson, E.S.; Wojcik, J.R.; Winett, R.A.; Williams, D.M. Social-Cognitive Determinants of Physical Activity: The Influence of Social Support, Self-Efficacy, Outcome Expectations, and Self-Regulation among Participants in a Church-Based Health Promotion Study. Health Psychol. 2006, 25, 510–520. [Google Scholar] [CrossRef]
- Trost, S.G.; Pate, R.R.; Sallis, J.F.; Freedson, P.S.; Taylor, W.C.; Dowda, M.; Sirard, J. Age and Gender Differences in Objectively Measured Physical Activity in Youth. Med. Sci. Sports Exerc. 2002, 34, 350. [Google Scholar] [CrossRef]
- Portela-Pino, I.; López-Castedo, A.; Martínez-Patiño, M.J.; Valverde-Esteve, T.; Domínguez-Alonso, J. Gender Differences in Motivation and Barriers for The Practice of Physical Exercise in Adolescence. Int. J. Environ. Res. Public Health 2020, 17, 168. [Google Scholar] [CrossRef] [PubMed]
- Ah Hong, S.; Peltzer, K.; Wimonpeerapattana, W. Impact of Self-Efficacy and Parenting Practice on Physical Activity among School Children. Nagoya J. Med. Sci. 2017, 79, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.J.; McCaughtry, N. Predicting Physical Activity in Inner-City Hispanic American Children. Hisp. Health Care Int. 2008, 6, 150–158. [Google Scholar] [CrossRef]
- Ji, H.; Gulati, M.; Huang, T.Y.; Kwan, A.C.; Ouyang, D.; Ebinger, J.E.; Casaletto, K.; Moreau, K.L.; Skali, H.; Cheng, S. Sex Differences in Association of Physical Activity with All-Cause and Cardiovascular Mortality. J. Am. Coll. Cardiol. 2024, 83, 783–793. [Google Scholar] [CrossRef]
- Seabra, A.F.T.; Maia, J.; Mendonça, D.; Thomis, M.; Caspersen, C.; Fulton, J. Age and Sex Differences in Physical Activity of Portuguese Adolescents. Med. Sci. Sports Exerc. 2008, 40, 65–70. [Google Scholar] [CrossRef]
- Amagasa, S.; Inoue, S.; Shibata, A.; Ishii, K.; Kurosawa, S.; Owen, N.; Oka, K. Differences in Accelerometer-Measured Physical Activity and Sedentary Behavior Between Middle-Aged Men and Women in Japan: A Compositional Data Analysis. J. Phys. Act. Health 2022, 19, 500–508. [Google Scholar] [CrossRef]
- Rodriguez-Ayllon, M.; Cadenas-Sánchez, C.; Estévez-López, F.; Muñoz, N.E.; Mora-Gonzalez, J.; Migueles, J.H.; Molina-García, P.; Henriksson, H.; Mena-Molina, A.; Martínez-Vizcaíno, V.; et al. Role of Physical Activity and Sedentary Behavior in the Mental Health of Preschoolers, Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 1383–1410. [Google Scholar] [CrossRef]
- van Uffelen, J.G.Z.; Khan, A.; Burton, N.W. Gender Differences in Physical Activity Motivators and Context Preferences: A Population-Based Study in People in Their Sixties. BMC Public Health 2017, 17, 624. [Google Scholar] [CrossRef]
- Whipple, M.O.; Pinto, A.J.; Abushamat, L.A.; Bergouignan, A.; Chapman, K.; Huebschmann, A.G.; Masters, K.S.; Nadeau, K.J.; Scalzo, R.L.; Schauer, I.E.; et al. Sex Differences in Physical Activity Among Individuals With Type 2 Diabetes Across the Life Span: A Systematic Review and Meta-Analysis. Diabetes Care 2022, 45, 2163–2177. [Google Scholar] [CrossRef]
- Egele, V.S.; Stark, R. Operationalization of the Social Cognitive Theory to Explain and Predict Physical Activity in Germany: A Scale Development. Front. Sports Act. Living 2024, 6, 1508602. [Google Scholar] [CrossRef] [PubMed]
- Booth, M. Assessment of Physical Activity: An International Perspective. Res. Q. Exerc. Sport 2000, 71, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Hagströmer, M.; Oja, P.; Sjöström, M. The International Physical Activity Questionnaire (IPAQ): A Study of Concurrent and Construct Validity. Public Health Nutr. 2006, 9, 755–762. [Google Scholar] [CrossRef]
- Bauman, A.; Ainsworth, B.E.; Bull, F.; Craig, C.L.; Hagströmer, M.; Sallis, J.F.; Pratt, M.; Sjöström, M. Progress and Pitfalls in the Use of the International Physical Activity Questionnaire (IPAQ) for Adult Physical Activity Surveillance. J. Phys. Act. Health 2009, 6, S5–S8. [Google Scholar] [CrossRef]
- Leiner, D.J. SoSci Survey, (Version 3.7.06) [Computer Software]. Available online: https://www.soscisurvey.de (accessed on 21 November 2024).
- Rosseel, Y. Lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research.(2.3.3) [Computer Software] 2023. Available online: https://cran.r-project.org/web/packages/psych/index.html (accessed on 12 January 2025).
- Schermelleh-Engel, K.; Moosbrugger, H.; Müller, H. Evaluating the Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures. Methods Psychol. Res. 2003, 8, 23–74. [Google Scholar]
- Lance, C.E.; Beck, S.S.; Fan, Y.; Carter, N.T. A Taxonomy of Path-Related Goodness-of-Fit Indices and Recommended Criterion Values. Psychol. Methods 2016, 21, 388–404. [Google Scholar] [CrossRef]
- Guenole, N.; Brown, A. The Consequences of Ignoring Measurement Invariance for Path Coefficients in Structural Equation Models. Front. Psychol. 2014, 5, 980. [Google Scholar] [CrossRef]
- Meade, A.W.; Johnson, E.C.; Braddy, P.W. Power and Sensitivity of Alternative Fit Indices in Tests of Measurement Invariance. J. Appl. Psychol. 2008, 93, 568–592. [Google Scholar] [CrossRef]
- Andrade, A.; D’Oliveira, A.; dos Santos, K.M.; Falese, L.; Mancone, S.; Diotaiuti, P.; Stabile, L.; Buonanno, G. Mood States of Active and Insufficiently Active Adolescents Related to Sleep Quality, Gender, Academic Performance and Guidelines for the Post-COVID-19 Scenario. Front. Psychol. 2024, 15, 1494456. [Google Scholar] [CrossRef] [PubMed]
- Wiley, E.; Moncion, K.; Rodrigues, L.; Fang, H.; Noguchi, K.S.; Roig, M.; Richardson, J.; MacDermid, J.C.; Tang, A. Exploring Differences between Gender Expressions in Exercise Self-Efficacy and Outcome Expectations for Exercise in Individuals with Stroke. PLoS ONE 2024, 19, e0299288. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.; Mozdoorzoy, T.; Kristiansen, E.; Nygaard Falch, H.; Aune, T.K.; van den Tillaar, R. A Comparison of Motives by Gender and Age Categories for Training at Norwegian Fitness Centres. Sports 2021, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- Gellert, P.; Ziegelmann, J.P.; Schwarzer, R. Affective and Health-Related Outcome Expectancies for Physical Activity in Older Adults. Psychol. Health 2012, 27, 816–828. [Google Scholar] [CrossRef]
- Feil, K.; Fritsch, J.; Rhodes, R.E. The Intention-Behaviour Gap in Physical Activity: A Systematic Review and Meta-Analysis of the Action Control Framework. Br. J. Sports Med. 2023, 57, 1265–1271. [Google Scholar] [CrossRef]
- Baranowski, T.; Anderson, C.; Carmack, C. Mediating Variable Framework in Physical Activity Interventions. How Are We Doing? How Might We Do Better? Am. J. Prev. Med. 1998, 15, 266–297. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.; Stewart, S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef]
- Egele, V.S.; Kiefer, L.H.; Stark, R. Faking Self-Reports of Health Behavior: A Comparison between a Within- and a Between-Subjects Design. Health Psychol. Behav. Med. 2021, 9, 895–916. [Google Scholar] [CrossRef]
- Straßburg, A.; Eisinger-Watzl, M.; Krems, C.; Roth, A.; Hoffmann, I. Comparison of Food Consumption and Nutrient Intake Assessed with Three Dietary Assessment Methods: Results of the German National Nutrition Survey II. Eur. J. Nutr. 2019, 58, 193–210. [Google Scholar] [CrossRef]
- Egele, V.S.; Klopp, E.; Stark, R. Evaluating Self-Reported Retrospective Average Daily Fruit, Vegetable, and Egg Intake: Trustworthy—Sometimes! Appl. Psychol. Health Well-Being 2023, 15, 1130–1149. [Google Scholar] [CrossRef]
χ2 | df | p | CFI | SRMR | RMSEA [CI] | pclose | |
---|---|---|---|---|---|---|---|
Self-efficacy | 6.734 | 3 | 0.081 | 0.998 | 0.009 | 0.052 [0.000–0.106] | 0.546 |
Goals | 6.051 | 2 | 0.049 | 0.997 | 0.013 | 0.056 [0.005–0.126] | 0.265 |
Outcome expectations | 7.266 | 3 | 0.064 | 0.993 | 0.017 | 0.054 [0.000–0.106] | 0.365 |
Sociostructural factors | 1.104 | 1 | 0.296 | 1.000 | 0.008 | 0.013 [0.000–0.111] | 0.577 |
Complete CFA | 230.202 | 124 | <0.001 | 0.978 | 0.053 | 0.040 [0.032–0.048] | 0.979 |
Hypothesis 1 | |||||||
SEM1 | 258.545 | 140 | <0.001 | 0.976 | 0.052 | 0.039 [0.032–0.047] | 0.991 |
Null modell1 * | 735.883 | - | - | - | - | - | - |
All paths SEM1 * | 369.726 | - | - | - | - | - | - |
Partial structural model1 | <0.001 | 2 | <0.001 | 1.000 | <0.001 | 0.000 [0.000–0.000] | >0.999 |
Hypothesis 2 | |||||||
SEM2overall | 444.044 | 294 | <0.001 | 0.970 | 0.062 | 0.043 [0.035–0.051] | 0.022 |
SEM2M | 210.152 | - | - | - | - | - | - |
SEM2W | 233.892 | - | - | - | - | - | - |
Null modell2M * | 395.332 | - | - | - | - | - | - |
Null modell2W * | 450.108 | - | - | - | - | - | - |
All paths SEM2M * | 209.602 | - | - | - | - | - | - |
All paths SEM2W * | 228.396 | - | - | - | - | - | - |
Partial structural model2M | <0.001 | 2 | <0.001 | 1.000 | <0.001 | 0.000 [0.000–0.000] | >0.999 |
Partial structural model2W | <0.001 | 2 | <0.001 | 1.000 | <0.001 | 0.000 [0.000–0.000] | >0.999 |
Paths | Estimate | SE | z | p | |
---|---|---|---|---|---|
Total effect | |||||
Total effect | Overall | 0.336 | 0.073 | 4.595 | <0.001 |
Men | 0.338 | 0.152 | 2.227 | 0.026 | |
Women | 0.327 | 0.075 | 4.383 | <0.001 | |
Direct effects | |||||
a1 Self-efficacy → Outcome expectations | Overall | 0.311 | 0.038 | 8.223 | <0.001 |
Men | 0.393 | 0.058 | 6.724 | <0.001 | |
Women | 0.252 | 0.037 | 6.745 | <0.001 | |
a2 Self-efficacy → Sociostructural factors | Overall | −0.219 | 0.047 | −4.657 | <0.001 |
Men | −0.160 | 0.067 | −2.381 | 0.017 | |
Women | −0.264 | 0.059 | −4.441 | <0.001 | |
a3 Self-efficacy → Goals | Overall | 0.396 | 0.059 | 6.695 | <0.001 |
Men | 0.294 | 0.101 | 2.920 | 0.004 | |
Women | 0.458 | 0.069 | 6.646 | <0.001 | |
b1 Outcome expectations → Goals | Overall | 0.504 | 0.111 | 4.543 | <0.001 |
Men | 0.578 | 0.170 | 3.392 | 0.001 | |
Women | 0.496 | 0.139 | 3.573 | <0.001 | |
b2 Sociostructural factors → Goals | Overall | 0.102 | 0.043 | 2.350 | 0.019 |
Men | 0.074 | 0.074 | 0.996 | 0.319 | |
Women | 0.105 | 0.053 | 1.978 | 0.048 | |
c1 Self-efficacy → Physical activity | Overall | 0.307 | 0.077 | 3.975 | <0.001 |
Men | 0.348 | 0.149 | 2.340 | 0.019 | |
Women | 0.251 | 0.089 | 2.832 | 0.005 | |
c2 Outcome expectations → Physical activity | Overall | −0.355 | 0.137 | −2.596 | 0.009 |
Men | −0.273 | 0.227 | −1.204 | 0.229 | |
Women | −0.411 | 0.170 | −2.417 | 0.016 | |
c3 Goals → Physical activity | Overall | 0.183 | 0.055 | 3.351 | 0.001 |
Men | 0.103 | 0.065 | 1.591 | 0.112 | |
Women | 0.257 | 0.082 | 3.154 | 0.002 | |
Indirect effects | |||||
a1 × c2 Self-efficacy → Outcome expectations → Physical activity | Overall | −0.068 | 0.017 | −4.053 | <0.001 |
Men | −0.063 | 0.028 | −2.232 | 0.026 | |
Women | −0.066 | 0.018 | −3.673 | <0.001 | |
a1 × b1 Self-efficacy → Outcome expectations → Goals | Overall | 0.157 | 0.037 | 4.215 | <0.001 |
Men | 0.227 | 0.073 | 3.126 | 0.002 | |
Women | 0.125 | 0.038 | 3.293 | 0.001 | |
a1 × b1 × c3 Self-efficacy → Outcome expectations → Goals → Physical activity | Overall | −0.029 | 0.012 | 2.422 | 0.015 |
Men | 0.023 | 0.019 | 1.266 | 0.206 | |
Women | 0.032 | 0.015 | 2.209 | 0.027 | |
a3 × c3 Self-efficacy → Goals → Physical activity | Overall | 0.072 | 0.022 | 3.284 | 0.001 |
Men | 0.030 | 0.019 | 1.593 | 0.111 | |
Women | 0.118 | 0.039 | 3.027 | 0.002 | |
a2 × b2 Self-efficacy → Sociostructural factors → Goals | Overall | −0.022 | 0.011 | −2.107 | 0.034 |
Men | −0.012 | 0.013 | −0.943 | 0.346 | |
Women | −0.028 | 0.015 | −1.792 | 0.073 | |
a2 × b2 × c3 Self-efficacy → Sociostructural factors → Goals → Physical activity | Overall | −0.004 | 0.002 | −1.936 | 0.053 |
Men | −0.001 | 0.001 | −0.841 | 0.400 | |
Women | −0.007 | 0.004 | −1.727 | 0.084 | |
b1 × c3 Outcome expectations → Goals → Physical activity | Overall | −0.092 | 0.038 | 2.457 | 0.014 |
Men | 0.060 | 0.047 | 1.275 | 0.202 | |
Women | 0.128 | 0.055 | 2.309 | 0.021 | |
b2 × c3 Sociostructural factors → Goals → Physical activity | Overall | −0.019 | 0.009 | 0.037 | 0.037 |
Men | 0.008 | 0.009 | 0.859 | 0.390 | |
Women | 0.027 | 0.014 | 1.875 | 0.061 | |
a1 × c2 + a1 × b1 + c3 + a2 × b2 × c3 + a3 × c3 Complete indirect path of self-efficacy | Overall | 0.029 | 0.034 | 0.839 | 0.401 |
Men | −0.010 | 0.045 | −0.224 | 0.822 | |
Women | 0.076 | 0.050 | 1.543 | 0.123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egele, V.S.; Stark, R. Social Cognitive Theory and Physical Activity: Examining Gender-Based Prediction Patterns and Theoretical Validity. Sports 2025, 13, 249. https://doi.org/10.3390/sports13080249
Egele VS, Stark R. Social Cognitive Theory and Physical Activity: Examining Gender-Based Prediction Patterns and Theoretical Validity. Sports. 2025; 13(8):249. https://doi.org/10.3390/sports13080249
Chicago/Turabian StyleEgele, Viktoria Sophie, and Robin Stark. 2025. "Social Cognitive Theory and Physical Activity: Examining Gender-Based Prediction Patterns and Theoretical Validity" Sports 13, no. 8: 249. https://doi.org/10.3390/sports13080249
APA StyleEgele, V. S., & Stark, R. (2025). Social Cognitive Theory and Physical Activity: Examining Gender-Based Prediction Patterns and Theoretical Validity. Sports, 13(8), 249. https://doi.org/10.3390/sports13080249