Relationship Between Early and Maximal Isometric Upper-Body Push and Pull Force Production Among Elite Female and Male Swedish Track and Field Throwers
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Experimental Procedures, and Test Device
2.2. Participants
2.3. Procedures
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Practical Applications
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.H.; Hornsby, W.G.; Suarez, D.G.; Duca, M.; Pierce, K.C. Training Specificity for Athletes: Emphasis on Strength-Power Training: A Narrative Review. J. Funct. Morphol. Kinesiol. 2022, 7, 102. [Google Scholar] [CrossRef]
- Redman, K.J.; Kelly, V.G.; Beckman, E.M. Seasonal Changes in Strength and Power in Elite Rugby League: A Systematic Review and Meta-Analysis. J. Sports Sci. Med. 2021, 20, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Beckham, G.; Mizuguchi, S.; Carter, C.; Sato, K.; Ramsey, M.; Lamont, H.; Hornsby, G.; Haff, G.; Stone, M. Relationships of isometric mid-thigh pull variables to weightlifting performance. J. Sports Med. Phys. Fit. 2013, 53, 573–581. [Google Scholar]
- Kirkpatrick, J.; Comfort, P. Strength, power, and speed qualities in English junior elite rugby league players. J. Strength Cond. Res. 2013, 27, 2414–2419. [Google Scholar] [CrossRef] [PubMed]
- Seitz, L.B.; Reyes, A.; Tran, T.T.; Saez de Villarreal, E.; Haff, G.G. Increases in lower-body strength transfer positively to sprint performance: A systematic review with meta-analysis. Sports Med. 2014, 44, 1693–1702. [Google Scholar] [CrossRef]
- Styles, W.J.; Matthews, M.J.; Comfort, P. Effects of Strength Training on Squat and Sprint Performance in Soccer Players. J. Strength Cond. Res. 2016, 30, 1534–1539. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef]
- Andersen, L.L.; Aagaard, P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur. J. Appl. Physiol. 2006, 96, 46–52. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Turner, A.N.; Comfort, P.; McMahon, J.; Bishop, C.; Chavda, S.; Read, P.; Mundy, P.; Lake, J. Developing Powerful Athletes, Part 1: Mechanical Underpinnings. Strength Cond. J. 2020, 42, 30–39. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.H.; Pierce, K.C.; Sands, W.A.; Stone, M.E. Weightlifting: A Brief Overview. Strength Cond. J. 2006, 28, 50–66. [Google Scholar] [CrossRef]
- Zaras, N.D.; Stasinaki, A.N.; Methenitis, S.K.; Krase, A.A.; Karampatsos, G.P.; Georgiadis, G.V.; Spengos, K.M.; Terzis, G.D. Rate of Force Development, Muscle Architecture, and Performance in Young Competitive Track and Field Throwers. J. Strength Cond. Res. 2016, 30, 81–92. [Google Scholar] [CrossRef]
- Stone, M.H.; Sanborn, K.; O’Bryant, H.S.; Hartman, M.; Stone, M.E.; Proulx, C.; Ward, B.; Hruby, J. Maximum strength-power-performance relationships in collegiate throwers. J. Strength Cond. Res. 2003, 17, 739–745. [Google Scholar] [CrossRef]
- Augustsson, J.; Gunhamn, T.; Andersson, H. An Assessment of the Ratio between Upper Body Push and Pull Strength in Female and Male Elite Swedish Track and Field Throwers. Sports 2024, 12, 201. [Google Scholar] [CrossRef]
- Grgic, J.; Scapec, B.; Mikulic, P.; Pedisic, Z. Test-retest reliability of isometric mid-thigh pull maximum strength assessment: A systematic review. Biol. Sport 2022, 39, 407–414. [Google Scholar] [CrossRef]
- Zaras, N.; Stasinaki, A.N.; Terzis, G. Biological Determinants of Track and Field Throwing Performance. J. Funct. Morphol. Kinesiol. 2021, 6, 40. [Google Scholar] [CrossRef]
- Bartlett, R.M.; Best, R.J. The biomechanics of javelin throwing: A review. J. Sports Sci. 1988, 6, 1–38. [Google Scholar] [CrossRef]
- Zatsiorsky, V.M.; Lanka, G.E.; Shalmanov, A.A. Biomechanical analysis of shot putting technique. Exerc. Sport. Sci. Rev. 1981, 9, 353–389. [Google Scholar] [CrossRef]
- Tillin, N.A.; Jimenez-Reyes, P.; Pain, M.T.; Folland, J.P. Neuromuscular performance of explosive power athletes versus untrained individuals. Med. Sci. Sports Exerc. 2010, 42, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rosell, D.; Pareja-Blanco, F.; Aagaard, P.; González-Badillo, J.J. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin. Physiol. Funct. Imaging 2018, 38, 743–762. [Google Scholar] [CrossRef]
- Venegas-Carro, M.; Kramer, A.; Moreno-Villanueva, M.; Gruber, M. Test-Retest Reliability and Sensitivity of Common Strength and Power Tests over a Period of 9 Weeks. Sports 2022, 10, 171. [Google Scholar] [CrossRef]
- Ogborn, D.I.; Bellemare, A.; Bruinooge, B.; Brown, H.; McRae, S.; Leiter, J. Comparison of Common Methodologies for the Determination of Knee Flexor Muscle Strength. Int. J. Sports Phys. Ther. 2021, 16, 350–359. [Google Scholar] [CrossRef]
- Lum, D.; Aziz, L. Validity and Reliability of the Isometric Prone Bench Pull Test. Int. J. Sports Med. 2020, 41, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Lum, D.; Haff, G.G.; Barbosa, T.M. The Relationship between Isometric Force-Time Characteristics and Dynamic Performance: A Systematic Review. Sports 2020, 8, 63. [Google Scholar] [CrossRef]
- Ellenbecker, T.S.; Cools, A. Rehabilitation of shoulder impingement syndrome and rotator cuff injuries: An evidence-based review. Br. J. Sports Med. 2010, 44, 319–327. [Google Scholar] [CrossRef]
- Perneger, T.V. What’s wrong with Bonferroni adjustments. BMJ 1998, 316, 1236–1238. [Google Scholar] [CrossRef]
- Wasserstein, R.L.; Lazar, N.A. The ASA Statement on p-Values: Context, Process, and Purpose. Am. Stat. 2016, 70, 129–133. [Google Scholar] [CrossRef]
- Amrhein, V.; Greenland, S.; McShane, B. Scientists rise up against statistical significance. Nature 2019, 567, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Jones, P.A.; Comfort, P. Reliability of the Dynamic Strength Index in college athletes. Int. J. Sports Physiol. Perform. 2015, 10, 542–545. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Sole, C.J.; Bellon, C.R.; Stone, M.H. Dynamic Strength Index: Relationships with Common Performance Variables and Contextualization of Training Recommendations. J. Hum. Kinet. 2020, 74, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Garrett, C.G.; Lutton, G. The Relationship Between Isometric Rate of Force Development and Isometric Maximum Strength Ratio to Dynamic Performance in Youth Athletes. Res. Investig. Sports Med. 2024, 10, 953–961. [Google Scholar] [CrossRef]
- Giles, G.; Lutton, G.; Martin, J. Scoping Review of the Isometric Mid-Thigh Pull Performance Relationship to Dynamic Sport Performance Assessments. J. Funct. Morphol. Kinesiol. 2022, 7, 114. [Google Scholar] [CrossRef]
Characteristics | Female (n = 17) | Male (n = 13) |
---|---|---|
Age (years) | 24 ± 4 | 23 ± 5 |
Height (cm) | 177 ± 6 | 188 ± 6 |
Body mass (kg) | 78 ± 10 | 104 ± 13 |
Practice (hours/week) | 14 ± 3 | 15 ± 4 |
Right-hand dominant | 17 | 12 |
Discus (PB range, m) | 5 (51.0–59.5) | 4 (51.5–59.0) |
Hammer (PB range, m) | 5 (63.0–72.5) | 2 (64.5–67.0) |
Shot put (PB range, m) | 2 (15.0–15.5) | 2 (17.5–18.5) |
Javelin (PB range, m) | 5 (51.5–55.5) | 5 (70.0–75.0) |
Force Variable | Females, Bench Press | Females, Bench Row | Males, Bench Press | Males, Bench Row |
---|---|---|---|---|
Peak force, N | 864 (168) | 823 (111) | 1468 (279) | 1315 (210) |
Force @ 50 ms, N | 339 (148) | 299 (94) | 541 (215) | 526 (149) |
Force @ 100 ms, N | 521 (169) | 509 (92) | 829 (279) | 840 (168) |
Force @ 150 ms, N | 626 (160) | 623 (80) | 965 (251) | 989 (173) |
Force @ 200 ms, N | 690 (146) | 679 (87) | 1053 (200) | 1058 (181) |
Force @ 250 ms, N | 728 (140) | 716 (95) | 1132 (198) | 1094 (199) |
Force @ 50 ms, % | 39 | 36 | 37 | 40 |
Force @ 100 ms, % | 60 | 62 | 56 | 64 |
Force @ 150 ms, % | 72 | 76 | 66 | 75 |
Force @ 200 ms, % | 80 | 83 | 72 | 80 |
Force @ 250 ms, % | 84 | 87 | 77 | 83 |
RFD, 0–50 ms, N/s | 6799 (3036) | 6062 (2149) | 10,587 (4680) | 10,633 (2878) |
RFD, 0–100 ms, N/s | 5252 (1755) | 5204 (1096) | 8396 (3289) | 8371 (1480) |
RFD, 0–150 ms, N/s | 4028 (1005) | 4220 (654) | 6215 (1906) | 6422 (1098) |
RFD, 0–200 ms, N/s | 3194 (636) | 3342 (565) | 4797 (1117) | 4932 (960) |
RFD, 0–250 ms, N/s | 2578 (469) | 2683 (507) | 3857 (823) | 3847 (894) |
Females, Push Peak Force, N | Males, Push Peak Force, N | Females, Pull Peak Force, N | Males, Pull Peak Force, N | |
---|---|---|---|---|
Force @ 50 ms, N | r = 0.29 r2 = 0.08 | r = 0.27 r2 = 0.07 | r = 0.07 r2 = 0.01 | r = 0.55 r2 = 0.30 |
Force @ 100 ms, N | r = 0.50 * r2 = 0.25 | r = 0.43 r2 = 0.19 | r = 0.33 r2 = 0.11 | r = 0.78 ** r2 = 0.61 |
Force @ 150 ms, N | r = 0.61 ** r2 = 0.37 | r = 0.54 r2 = 0.29 | r = 0.67 ** r2 = 0.45 | r = 0.89 ** r2 = 0.79 |
Force @ 200 ms, N | r = 0.71 ** r2 = 0.50 | r = 0.65 * r2 = 0.42 | r = 0.78 ** r2 = 0.61 | r = 0.92 ** r2 = 0.85 |
Force @ 250 ms, N | r = 0.80 ** r2 = 0.64 | r = 0.76 ** r2 = 0.58 | r = 0.84 ** r2 = 0.71 | r = 0.92 ** r2 = 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augustsson, J.; Gunhamn, T.; Andersson, H. Relationship Between Early and Maximal Isometric Upper-Body Push and Pull Force Production Among Elite Female and Male Swedish Track and Field Throwers. Sports 2025, 13, 226. https://doi.org/10.3390/sports13070226
Augustsson J, Gunhamn T, Andersson H. Relationship Between Early and Maximal Isometric Upper-Body Push and Pull Force Production Among Elite Female and Male Swedish Track and Field Throwers. Sports. 2025; 13(7):226. https://doi.org/10.3390/sports13070226
Chicago/Turabian StyleAugustsson, Jesper, Ted Gunhamn, and Håkan Andersson. 2025. "Relationship Between Early and Maximal Isometric Upper-Body Push and Pull Force Production Among Elite Female and Male Swedish Track and Field Throwers" Sports 13, no. 7: 226. https://doi.org/10.3390/sports13070226
APA StyleAugustsson, J., Gunhamn, T., & Andersson, H. (2025). Relationship Between Early and Maximal Isometric Upper-Body Push and Pull Force Production Among Elite Female and Male Swedish Track and Field Throwers. Sports, 13(7), 226. https://doi.org/10.3390/sports13070226