Does the Menstrual Phase Matter in Vascular Endothelial Responses to Acute Exercise? A Narrative Review of the Literature
Abstract
1. Introduction
2. Estrogen and Its Impact on the Endothelium
3. Menstrual Phases Overview and the Physiological Effect of the Phases on Endothelial Function
4. Vascular Responses to Acute Exercise
5. Acute Exercise in Females and Menstrual Phases
Study | Participants’ | Menstrual Phase and Assessment | Exercise Protocol | Outcome Measures | Measurement Timing | Key Findings |
---|---|---|---|---|---|---|
D’Urzo et al., 2018 [41] | Healthy premenopausal women (n = 12) | Early Follicular (Days 2–7); Late Follicular (Days 13–14); Hormonal levels via blood samples | Handgrip MVC for 6 min (1 s on/5 s off) | FMD | Baseline, each minute for 6 min | No phase differences in vascular responses. |
Restaino et al., 2022 [64] | Healthy (n = 20), and obese (n = 9) premenopausal women | Early menstrual phase (~Days 1–5); Proliferative Phase (~Days 7–12); Hormonal levels via blood samples | Handgrip: 2 minwarm-up, increase (0.25 W/min) until failure | FVC | Final 15 s of exercise | Reduced blood flow in obese women during early menses; improved in proliferative phase |
Okamoto et al., 2017 [66] | Healthy premenopausal women (n = 9) | Follicular (Days 1–5); Luteal (Days 20–24); Hormonal levels via blood samples | Warm up, bench press (80% 1RM, 5 × 5), biceps curl (70% 1RM, 5 × 10) | PWV | Baseline, 30 min, 60 min post-exercise | Increase PWV at 30- and 60 minpost-exercise in follicular phase only. |
Gonzales et al., 2020 [62] | Healthy premenopausal women (n = 24) | Follicular (Days 7–14); Luteal (Days 18–24); Hormonal levels via blood samples | Handgrip (10% MVC, 5 min); Citrulline supplementation (6 g/day for 7 days) vs. placebo | FVC, FBF, Plasma Arginine | Baseline, last 30s of exercise | No phase differences or citrulline effects on vascular measures. |
Weggen et al., 2023 [60] | Healthy premenopausal women (total n = 21; n = 11 measured in two phases) | Early Follicular (Days 1–7); Late Follicular (Days 12–14); Hormonal levels via blood samples | Passive leg movement (PLM); handgrip (3 kg, 6 kg, 3 min each) | Vascular conductance, blood flow (femoral and brachial) | Baseline, during (PLM) or last minute each stage (handgrip) | No phase differences in vascular responses. |
Park et al., 2017 [71] | Healthy premenopausal women (n = 10) | Early Follicular (Days 1–4); Late Follicular (Days 10–13) Calendar-based tracking | 2 minwarm-up; 30 min cycling 60% VO2peak | Total vascular conductance | 5, 10, 15 min post-exercise | Higher total vascular conductance in late follicular phase. |
Shiozawa et al., 2023 [61] | Healthy premenopausal women (n = 11) | Early Follicular (Days 1–4); Mid-Luteal (Days 18–22); Menstrual phase via Ovulation Predictor Kit | Dynamic leg exercise at 30% HRR, 4 min | Celiac artery blood flow and vascular conductance | Baseline, every 1 min during exercise | No phase differences in vascular responses. |
Limberg et al., 2010 [40] | Healthy premenopausal women (n = 9) | Early Follicular (Day 3 ± 0.3); Early Luteal (Day 15 ± 0.8); Hormonal levels via blood samples | Handgrip 15% and 30% MVC 7 min; Phenylephrine or clonidine infusion during final 3 min | FBF, FVC | Baseline, continuously during exercise, prior and during infusions | No phase difference at baseline and during exercise prior infusions. Vasoconstrictor response to clonidine was lower in the early luteal phase compared to the early follicular phase at 15% MVC. |
6. Potential Mechanisms
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
1RM | One Repetition Maximum |
EPCs | Endothelial Progenitor Cells |
ERα | Estrogen Receptor Alpha |
eNOS | Endothelial Nitric Oxide Synthase |
FBF | Forearm Blood Flow |
FMD | Flow-Mediated Dilation |
FSH | Follicle-Stimulating Hormone |
FVC | Forearm Vascular Conductance |
HRR | Heart Rate Reserve |
LH | Luteinizing Hormone |
MVC | Maximum Voluntary Contraction |
NO | Nitric Oxide |
PI3K/Akt | Phosphoinositide 3-Kinase/Protein Kinase B |
PLM | Passive Leg Movement |
PWV | Pulse Wave Velocity |
SNS | Sympathetic Nervous System |
VO2peak | Peak Volume of Oxygen Uptake |
References
- Pabbidi, M.R.; Sanapureddy, P.; Didion, S.P.; Kuppusamy, M.; Reed, J.T.; Sontakke, S.P. Sex differences in the vascular function and related mechanisms: Role of 17β-estradiol. Am. J. Physiol.-Heart Circ. Physiol. 2018, 315, H1499–H1518. [Google Scholar] [CrossRef] [PubMed]
- Green, D.J.; Hopman, M.T.E.; Padilla, J.; Laughlin, M.H.; Thijssen, D.H.J. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol. Rev. 2017, 97, 495–528. [Google Scholar] [CrossRef] [PubMed]
- Green, D.J.; Hopkins, N.D.; Jones, H.; Thijssen, D.H.J.; Eijsvogels, T.M.H.; Yeap, B.B. Sex differences in vascular endothelial function and health in humans: Impacts of exercise. Exp. Physiol. 2016, 101, 230–242. [Google Scholar] [CrossRef]
- Green, D.J.; Marsh, C.E.; Thomas, H.J.; Lester, L.; Scurrah, K.J.; Haynes, A.; Naylor, L.H. Exercise and Artery Function in Twins: Sex Differences in a Cross-Over Trial. Hypertension 2023, 80, 1343–1352. [Google Scholar] [CrossRef]
- Miller, K.B.; Moir, M.E.; Fico, B.G. Vascular health and exercise in females throughout the lifespan: Exploring puberty, pregnancy and menopause. Exp. Physiol. 2025; Early View. [Google Scholar] [CrossRef]
- Seals, D.R.; Nagy, E.E.; Moreau, K.L. Aerobic exercise training and vascular function with ageing in healthy men and women. J. Physiol. 2019, 597, 4901–4914. [Google Scholar] [CrossRef] [PubMed]
- Dawson, E.A.; Green, D.J.; Cable, N.T.; Thijssen, D.H.J. Effects of acute exercise on flow-mediated dilatation in healthy humans. J. Appl. Physiol. 2013, 115, 1589–1598. [Google Scholar] [CrossRef]
- Dawson, E.A.; Cable, N.T.; Green, D.J.; Thijssen, D.H.J. Do acute effects of exercise on vascular function predict adaptation to training? Eur. J. Appl. Physiol. 2018, 118, 523–530. [Google Scholar] [CrossRef]
- Harris, R.A.; Nishiyama, S.K.; Wray, D.W.; Richardson, R.S. Ultrasound Assessment of Flow-Mediated Dilation. Hypertension 2010, 55, 1075–1085. [Google Scholar] [CrossRef]
- Thompson, S.L.; Brade, C.J.; Henley-Martin, S.R.; Naylor, L.H.; Spence, A.L. Vascular adaptation to exercise: A systematic review and audit of female representation. Am. J. Physiol.-Heart Circ. Physiol. 2024, 326, H971–H985. [Google Scholar] [CrossRef]
- Mihm, M.; Gangooly, S.; Muttukrishna, S. The normal menstrual cycle in women. Anim. Reprod. Sci. 2011, 124, 229–236. [Google Scholar] [CrossRef]
- Stirone, C.; Boroujerdi, A.; Krause, D.N.; Duckles, S.P. Estrogen receptor activation of phosphoinositide-3 kinase, akt, and nitric oxide signaling in cerebral blood vessels: Rapid and long-term effects. Mol. Pharmacol. 2004, 67, 105–113. [Google Scholar] [CrossRef]
- Lu, Q.; Iyer, L.K.; Ueda, K.; Andrade, T.; Schnitzler, G.R.; Diomede, O.I.; Karas, R.H. ER Alpha Rapid Signaling Is Required for Estrogen Induced Proliferation and Migration of Vascular Endothelial Cells. PLoS ONE 2016, 11, e0152807. [Google Scholar] [CrossRef] [PubMed]
- Wenner, M.M.; Stachenfeld, N.S. Point: Investigators should control for menstrual cycle phase when performing studies of vascular control that include women. J. Appl. Physiol. 2020, 129, 1114–1116. [Google Scholar] [CrossRef] [PubMed]
- Moreau, K.L. Modulatory influence of sex hormones on vascular aging. Am. J. Physiol.-Heart Circ. Physiol. 2019, 316, H522–H526. [Google Scholar] [CrossRef]
- Holder, S.M.; Brislane, Á.; Dawson, E.A.; Hopkins, N.D.; Hopman, M.T.E.; Cable, N.T.; Jones, H.; Schreuder, T.H.A.; Sprung, V.S.; Naylor, L.; et al. Relationship Between Endothelial Function and the Eliciting Shear Stress Stimulus in Women: Changes Across the Lifespan Differ to Men. J. Am. Heart Assoc. 2019, 8, e010994. [Google Scholar] [CrossRef]
- Green, D.J.; Dawson, E.A.; Groenewoud, H.M.M.; Jones, H.; Thijssen, D.H.J. Is flow-mediated dilation nitric oxide mediated?: A meta-analysis. Hypertension 2014, 63, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.A.; Tedjasaputra, V.; Zhao, J.; Richardson, R.S. Premenopausal Women Exhibit an Inherent Protection of Endothelial Function Following a High-Fat Meal. Reprod. Sci. 2012, 19, 221–228. [Google Scholar] [CrossRef]
- Adkisson, E.J.; Braith, R.W.; Beck, D.T.; Gurovich, A.N.; Martin, J.S.; Casey, D.P. Central, peripheral and resistance arterial reactivity: Fluctuates during the phases of the menstrual cycle. Exp. Biol. Med. 2010, 235, 111–118. [Google Scholar] [CrossRef]
- Luca, M.C.; Liuni, A.; Harvey, P.; Parker, J.D.; Mak, S. Effects of estradiol on measurements of conduit artery endothelial function after ischemia and reperfusion in premenopausal women. Can. J. Physiol. Pharmacol. 2016, 94, 1304–1308. [Google Scholar] [CrossRef]
- Williams, M.R.I.; Paige, J.; Westerman, R.A.; Komesaroff, P.A.; Sudhir, K.; Kingwell, B.A.; Blombery, P.A. Variations in endothelial function and arterial compliance during the menstrual cycle. J. Clin. Endocrinol. Metab. 2001, 86, 5389–5395. [Google Scholar] [CrossRef]
- Vongpatanasin, W. Autonomic Regulation of Blood Pressure in Menopause. Semin. Reprod. Med. 2009, 27, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Moreau, K.L.; Deane, K.D.; Meditz, A.L.; Kohrt, W.M. Tumor necrosis factor-α inhibition improves endothelial function and decreases arterial stiffness in estrogen-deficient postmenopausal women. Atherosclerosis 2013, 230, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Moreau, K.L.; Kohrt, W.M.; Deane, K.D.; Meditz, A. Tetrahydrobiopterin improves endothelial function and decreases arterial stiffness in estrogen-deficient postmenopausal women. Am. J. Physiol.-Heart Circ. Physiol. 2012, 302, H1211–H1218. [Google Scholar] [CrossRef] [PubMed]
- Moreau, K.L.; Meditz, A.L.; Kohrt, W.M.; Hildreth, K.L.; Deane, K.D. Endothelial Function Is Impaired across the Stages of the Menopause Transition in Healthy Women. J. Clin. Endocrinol. Metab. 2012, 97, 4692–4700. [Google Scholar] [CrossRef]
- Spicuzza, J.M.D.; Thijssen, D.H.J.; Somani, Y.B.; Proctor, D.N. Menopausal stage differences in endothelial resistance to ischemia-reperfusion injury. Physiol. Rep. 2023, 11, e15768. [Google Scholar] [CrossRef]
- Moreau, K.L.; Hildreth, K.L.; Klawitter, J.; Blatchford, P.; Kohrt, W.M. Decline in endothelial function across the menopause transition in healthy women is related to decreased estradiol and increased oxidative stress. GeroScience 2020, 42, 1699–1714. [Google Scholar] [CrossRef]
- Hodis, H.N.; Dustin, L.; Stanczyk, F.Z.; Mack, W.J.; Azen, S.P.; Shoupe, D.; Kono, N.; Hwang-Levine, J.; Li, Y.; Budoff, M.J.; et al. Vascular Effects of Early versus Late Postmenopausal Treatment with Estradiol. N. Engl. J. Med. 2016, 374, 1221–1231. [Google Scholar] [CrossRef]
- Ozemek, C.; Hildreth, K.L.; Bok, R.; Hurt, K.J.; Moreau, K.L.; Blatchford, P.J.; Kohrt, W.M.; Seals, D.R. Effects of resveratrol or estradiol on postexercise endothelial function in estrogen-deficient postmenopausal women. J. Appl. Physiol. 2020, 128, 739–747. [Google Scholar] [CrossRef]
- Moreau, K.L.; Kohrt, W.M.; Stauffer, B.L.; Seals, D.R. Essential Role of Estrogen for Improvements in Vascular Endothelial Function With Endurance Exercise in Postmenopausal Women. J. Clin. Endocrinol. Metab. 2013, 98, 4507–4515. [Google Scholar] [CrossRef]
- Nudy, M.; Buerger, J.; Dreibelbis, S.; Jiang, X.; Hodis, H.N.; Schnatz, P.F. Menopausal hormone therapy and coronary heart disease: The roller-coaster history. Climacteric 2023, 27, 81–88. [Google Scholar] [CrossRef]
- Oliver-Williams, C.; Glisic, M.; Shahzad, S.; Brown, E.; Pellegrino Baena, C.; Chadni, M.; Chowdhury, R.; Franco, O.H.; Muka, T. The route of administration, timing, duration and dose of postmenopausal hormone therapy and cardiovascular outcomes in women: A systematic review. Hum. Reprod. Update 2019, 25, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Farage, M.A.; Neill, S.; Maclean, A.B. Physiological Changes Associated with the Menstrual Cycle. Obstet. Gynecol. Surv. 2009, 64, 58–72. [Google Scholar] [CrossRef]
- Williams, J.S.; Dunford, E.C.; Macdonald, M.J. Impact of the menstrual cycle on peripheral vascular function in premenopausal women: Systematic review and meta-analysis. Am. J. Physiol.-Heart Circ. Physiol. 2020, 319, H1327–H1337. [Google Scholar] [CrossRef]
- Hashimoto, M.; Akishita, M.; Eto, M.; Ishikawa, M.; Kozaki, K.; Toba, K.; Sagara, Y.; Taketani, Y.; Orimo, H.; Ouchi, Y. Modulation of Endothelium-Dependent Flow-Mediated Dilatation of the Brachial Artery by Sex and Menstrual Cycle. Circulation 1995, 92, 3431–3435. [Google Scholar] [CrossRef]
- Kawano, H.; Motoyama, T.; Kugiyama, K.; Hirashima, O.; Ohgushi, M.; Yoshimura, M.; Ogawa, H.; Okumura, K.; Yasue, H. Menstrual cyclic variation of endothelium-dependent vasodilation of the brachial artery: Possible role of estrogen and nitric oxide. Proc. Assoc. Am. Physicians 1996, 108, 473–480. [Google Scholar]
- Giannattasio, C.; Grappiolo, A.; Bo, A.D.; Failla, M.; Colombo, M.; Stella, M.L.; Mancia, G. Fluctuations of radial artery distensibility throughout the menstrual cycle. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 1925–1929. [Google Scholar] [CrossRef] [PubMed]
- English, J.L.; Jacobs, L.O.; Green, G.; Andrews, T.C. Effect of the menstrual cycle on endothelium-dependent vasodilation of the brachial artery in normal young women. Am. J. Cardiol. 1998, 82, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.B.; Schrier, R.W.; Woodmansee, W.; Merouani, A.; Dahms, T.; Osorio, F.; Abraham, W.T.; Coffin, C.; Moore, L.G.; Zamudio, S.; et al. Systemic and renal hemodynamic changes in the luteal phase of the menstrual cycle mimic early pregnancy. Am. J. Physiol.-Ren. Physiol. 1997, 273, F777–F782. [Google Scholar] [CrossRef]
- Limberg, J.K.; Eldridge, M.W.; Proctor, L.T.; Sebranek, J.J.; Schrage, W.G. Alpha-adrenergic control of blood flow during exercise: Effect of sex and menstrual phase. J. Appl. Physiol. Bethesda Md 1985 2010, 109, 1360–1368. [Google Scholar] [CrossRef]
- D’Urzo, K.A.; King, T.J.; Williams, J.S.; Silvester, M.D.; Pyke, K.E. The impact of menstrual phase on brachial artery flow-mediated dilatation during handgrip exercise in healthy premenopausal women. Exp. Physiol. 2018, 103, 291–302. [Google Scholar] [CrossRef]
- Rakobowchuk, M.; Parsloe, E.R.; Gibbins, S.E.; Harris, E.; Birch, K.M. Prolonged Low Flow Reduces Reactive Hyperemia and Augments Low Flow Mediated Constriction in the Brachial Artery Independent of the Menstrual Cycle. PLoS ONE 2013, 8, e55385. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.R.; Seely, E.W.; Goldfine, A.B. Cardiovascular risk factors and menstrual cycle phase in pre-menopausal women. J. Endocrinol. Investig. 2012, 35, 715–719. [Google Scholar] [CrossRef]
- Liu, K.R.; Islam, H.; Lew, L.A.; Byrne, A.C.; Pyke, K.E.; Fenuta, A.M.; Mcgarity-Shipley, E.C. Individual variation of follicular phase changes in endothelial function across two menstrual cycles. Exp. Physiol. 2021, 106, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- Saz-Lara, A.; Cavero-Redondo, I.; Del Saz-Lara, A.; Rodríguez-Gutiérrez, E.; Bizzozero-Peroni, B.; Pascual-Morena, C. The acute effect of exercise on the endothelial glycocalyx in healthy adults: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2024, 54, e14240. [Google Scholar] [CrossRef]
- Tryfonos, A.; Cocks, M.; Browning, N.; Dawson, E.A. Post-exercise endothelial function is not associated with extracellular vesicle release in healthy young males. Appl. Physiol. Nutr. Metab. 2023, 48, 209–218. [Google Scholar] [CrossRef]
- Mathews, L.; Hays, A.G.; Iantorno, M.; Bonanno, G.; Gerstenblith, G.; Weiss, R.G.; Schär, M. Coronary endothelial function is better in healthy premenopausal women than in healthy older postmenopausal women and men. PLoS ONE 2017, 12, e0186448. [Google Scholar] [CrossRef]
- Morishima, T.; Padilla, J.; Tsuchiya, Y.; Ochi, E. Maintenance of endothelial function following acute resistance exercise in females is associated with a tempered blood pressure response. J. Appl. Physiol. 2020, 129, 792–799. [Google Scholar] [CrossRef]
- Tremblay, J.C.; Stimpson, T.V.; Pyke, K.E. Evidence of sex differences in the acute impact of oscillatory shear stress on endothelial function. J. Appl. Physiol. 2019, 126, 314–321. [Google Scholar] [CrossRef]
- Shill, D.D.; Lansford, K.A.; Hempel, H.K.; Call, J.A.; Murrow, J.R.; Jenkins, N.T. Effect of exercise intensity on circulating microparticles in men and women. Exp. Physiol. 2018, 103, 693–700. [Google Scholar] [CrossRef]
- Doonan, R.J.; Mutter, A.; Egiziano, G.; Gomez, Y.-H.; Daskalopoulou, S.S. Differences in arterial stiffness at rest and after acute exercise between young men and women. Hypertens. Res. 2013, 36, 226–231. [Google Scholar] [CrossRef]
- Hwang, I.-C.; Kim, K.-H.; Choi, W.-S.; Kim, H.-J.; Im, M.-S.; Kim, Y.-J.; Kim, S.-H.; Kim, M.-A.; Sohn, D.-W.; Zo, J.-H. Impact of acute exercise on brachial artery flow-mediated dilatation in young healthy people. Cardiovasc. Ultrasound 2012, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Shenouda, N.; Skelly, L.E.; Gibala, M.J.; MacDonald, M.J. Brachial artery endothelial function is unchanged after acute sprint interval exercise in sedentary men and women. Exp. Physiol. 2018, 103, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.-K.; Pinto, M.M.; Kim, H.-K.; Hwang, C.-L.; Lim, J.; Handberg, E.M.; Christou, D.D. Sex impacts the flow-mediated dilation response to acute aerobic exercise in older adults. Exp. Gerontol. 2017, 91, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Harvey, P.J.; Morris, B.L.; Kubo, T.; Picton, P.E.; Su, W.S.; Notarius, C.F.; Floras, J.S. Hemodynamic after-effects of acute dynamic exercise in sedentary normotensive postmenopausal women. J. Hypertens. 2005, 23, 285. [Google Scholar] [CrossRef]
- Harvey, P.J.; Picton, P.E.; Su, W.S.; Morris, B.L.; Notarius, C.F.; Floras, J.S. Exercise as an alternative to oral estrogen for amelioration of endothelial dysfunction in postmenopausal women. Am. Heart J. 2005, 149, 291–297. [Google Scholar] [CrossRef]
- Serviente, C.; Troy, L.M.; de Jonge, M.; Shill, D.D.; Jenkins, N.T.; Witkowski, S. Endothelial and inflammatory responses to acute exercise in perimenopausal and late postmenopausal women. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2016, 311, R841–R850. [Google Scholar] [CrossRef]
- Elliott-Sale, K.J.; Minahan, C.L.; de Jonge, X.A.K.J.; Ackerman, K.E.; Sipilä, S.; Constantini, N.W.; Lebrun, C.M.; Hackney, A.C. Methodological Considerations for Studies in Sport and Exercise Science with Women as Participants: A Working Guide for Standards of Practice for Research on Women. Sports Med 2021, 51, 843–861. [Google Scholar] [CrossRef]
- Khaksar, A.; Adler, T.E.; Coovadia, Y.; Usselman, C.W. Effect of the Menstrual Cycle on Vasodilatory Responses to Standard and Enhanced Flow- Mediated Dilation Stimuli. FASEB J. 2019, 33, 541.10. [Google Scholar] [CrossRef]
- Weggen, J.B.; Hogwood, A.C.; Decker, K.P.; Darling, A.M.; Chiu, A.; Richardson, J.; Garten, R.S. Vascular Responses to Passive and Active Movement in Premenopausal Females: Comparisons across Sex and Menstrual Cycle Phase. Med. Sci. Sports Exerc. 2023, 55, 900. [Google Scholar] [CrossRef]
- Shiozawa, K.; Saito, M.; Lee, J.B.; Kashima, H.; Endo, M.Y.; Ishida, K.; Millar, P.J.; Katayama, K. Effects of sex and menstrual cycle phase on celiac artery blood flow during dynamic moderate-intensity leg exercise in young individuals. J. Appl. Physiol. 2023, 135, 956–967. [Google Scholar] [CrossRef]
- Gonzales, J.U.; Fischer, S.M.; Maharaj, A.; Vellers, H.; Anderson, T.; Karnjanapiboonwong, A.; Subbiah, S.; Kellawan, J.M.; Figueroa, A. Response of exercise-onset vasodilator kinetics to L-citrulline supplementation during different phases of the menstrual cycle. Physiol. Rep. 2020, 8, e14536. [Google Scholar] [CrossRef]
- Allerton, T.; Proctor, D.; Dugas, T.; Irving, B.; Stephens, J.; Spielmann, G. L-Citrulline Supplementation: Impact on Cardiometabolic Health. Nutrients 2018, 10, 921. [Google Scholar] [CrossRef] [PubMed]
- Restaino, R.M.; Cradock, K.; Barlow, M.A. Effects of the Follicular Menstrual Phase on Forearm Vascular Conductance in Abdominal Obese Premenopausal Women During Graded Handgrip Exercise. Artery Res. 2022, 28, 79–88. [Google Scholar] [CrossRef]
- Pilz, N.; Heinz, V.; Ax, T.; Fesseler, L.; Patzak, A.; Bothe, T.L. Pulse Wave Velocity: Methodology, Clinical Applications, and Interplay with Heart Rate Variability. Rev. Cardiovasc. Med. 2024, 25, 266. [Google Scholar] [CrossRef]
- Okamoto, T.; Kobayashi, R.; Sakamaki-Sunaga, M. Effect of Resistance Exercise on Arterial Stiffness during the Follicular and Luteal Phases of the Menstrual Cycle. Int. J. Sports Med. 2017, 38, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, K.; Fernhall, B.; Kelly, E.; Jae, S.; Collier, S. Arterial Stiffness and Baroreflex Sensitivity Following Bouts of Aerobic and Resistance Exercise. Int. J. Sports Med. 2006, 28, 197–203. [Google Scholar] [CrossRef]
- MacDougall, J.D.; Tuxen, D.; Sale, D.G.; Moroz, J.R.; Sutton, J.R. Arterial blood pressure response to heavy resistance exercise. J. Appl. Physiol. 1985, 58, 785–790. [Google Scholar] [CrossRef]
- Mak, W.Y.V.; Lai, W.K.C. Acute Effect on Arterial Stiffness after Performing Resistance Exercise by Using the Valsalva Manoeuvre during Exertion. BioMed Res. Int. 2015, 2015, 343916. [Google Scholar] [CrossRef]
- Carter, J.R.; Fu, Q.; Minson, C.T.; Joyner, M.J. Ovarian Cycle and Sympathoexcitation in Premenopausal Women. Hypertension 2013, 61, 395–399. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.-S.; Nho, H.; Kim, K.-A.; Kim, J.-K.; Choi, H.-M. The Effect of Cardiovascular Responses after Aerobic Exercise in Menstrual Cycle. Health 2017, 9, 425–434. [Google Scholar] [CrossRef]
- Joyner, M.J.; Barnes, J.N.; Charkoudian, N.; Wallin, B.G.; Hart, E.C. Neural control of the circulation: How sex and age differences interact in humans. Compr. Physiol. 2014, 5, 193–215. [Google Scholar] [CrossRef]
- Barnes, J.N.; Curry, T.B.; Hart, E.C.; Nicholson, W.T.; Charkoudian, N.; Wallin, B.G.; Eisenach, J.H.; Joyner, M.J. Aging Enhances Autonomic Support of Blood Pressure in Women. Hypertension 2013, 63, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Weitz, G.; Elam, M.; Dodt, C.; Fehm, H.L.; Born, J. Postmenopausal estrogen administration suppresses muscle sympathetic nerve activity. J. Clin. Endocrinol. Metab. 2001, 86, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Chidambaram, M.; Scholey, J.W.; Duncan, J.A.; Lai, V.S.; Miller, J.A.; Cattran, D.C.; Floras, J.S. Variation in the renin angiotensin system throughout the normal menstrual cycle. J. Am. Soc. Nephrol. 2002, 13, 446–452. [Google Scholar] [CrossRef]
- Hellsten, Y.; Gliemann, L. Limb vascular function in women-Effects of female sex hormones and physical activity. Transl. Sports Med. 2018, 1, 14–24. [Google Scholar] [CrossRef]
- Elliott-Sale, K.J.; Altini, M.; Doyle-Baker, P.; Ferrer, E.; Flood, T.R.; Harris, R.; Impellizzeri, F.M.; de Jonge, X.J.; Kryger, K.O.; Lewin, G.; et al. Why We Must Stop Assuming and Estimating Menstrual Cycle Phases in Laboratory and Field-Based Sport Related Research. Sports Med 2025, 55, 1339–1351. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghniem, S.; Dawson, E.A.; Tryfonos, A. Does the Menstrual Phase Matter in Vascular Endothelial Responses to Acute Exercise? A Narrative Review of the Literature. Sports 2025, 13, 210. https://doi.org/10.3390/sports13070210
Ghniem S, Dawson EA, Tryfonos A. Does the Menstrual Phase Matter in Vascular Endothelial Responses to Acute Exercise? A Narrative Review of the Literature. Sports. 2025; 13(7):210. https://doi.org/10.3390/sports13070210
Chicago/Turabian StyleGhniem, Sairos, Ellen A. Dawson, and Andrea Tryfonos. 2025. "Does the Menstrual Phase Matter in Vascular Endothelial Responses to Acute Exercise? A Narrative Review of the Literature" Sports 13, no. 7: 210. https://doi.org/10.3390/sports13070210
APA StyleGhniem, S., Dawson, E. A., & Tryfonos, A. (2025). Does the Menstrual Phase Matter in Vascular Endothelial Responses to Acute Exercise? A Narrative Review of the Literature. Sports, 13(7), 210. https://doi.org/10.3390/sports13070210