Maximal and Explosive Strength of High-Level Alpine Skiers After Severe Lower Extremity Injury: A Retrospective Comparison with Non-Injured Skiers
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Participant Characteristics
2.3. Data Collection
2.4. Performance Test Measurements
2.5. Data Analysis
3. Results
3.1. Injury Types and Time Spans
3.2. Comparison of the Non-Injured and Post-Injured Groups
3.3. Sex Differences Within the Non-Injured and the Post-Injured Groups
4. Discussion
- Maximal strength (Fmax)
- Concentric explosive strength (Pmax in the SJ)
- Stretch-shortening explosive strength (Pmax in the CMJ)
Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACL | Anterior cruciate ligament |
| CMJ | Countermovement jump |
| EC | European Cup |
| FIS | International Ski Federation |
| Fmax | Isometric maximal strength (force) |
| ISS | Injury surveillance system |
| MLD | Muscle diagnostic test procedure (Muskelleistungsdiagnostik) |
| N_INJ | Non-injured group |
| P_INJ | Post-injured group |
| Pmax | Explosive strength (mechanical peak power) |
| RTS | Return to sport |
| RTP | Return to performance |
| SJ | Squat jump |
| T1 | Test 1 |
| T2 | Test 2 |
| WC | World Cup |
References
- Gilgien, M.; Kröll, J.; Spörri, J.; Crivelli, P.; Müller, E. Application of dGNSS in Alpine Ski Racing: Basis for Evaluating Physical Demands and Safety. Front. Physiol. 2018, 9, 145. [Google Scholar] [CrossRef]
- Gilgien, M.; Spörri, J.; Kröll, J.; Crivelli, P.; Müller, E. Mechanics of turning and jumping and skier speed are associated with injury risk in men’s World Cup alpine skiing: A comparison between the competition disciplines. Br. J. Sports Med. 2014, 48, 742–747. [Google Scholar] [CrossRef]
- Hydren, J.R.; Volek, J.S.; Maresh, C.M.; Comstock, B.A.; Kraemer, W.J. Review of Strength and Conditioning for Alpine Ski Racing. Strength Cond. J. 2013, 35, 10–28. [Google Scholar] [CrossRef]
- Alhammoud, M.; Racinais, S.; Rousseaux-Blanchi, M.P.; Bouscaren, N. Recording injuries only during winter competitive season underestimates injury incidence in elite alpine skiers. Scand. J. Med. Sci. Sports 2020, 30, 1177–1187. [Google Scholar] [CrossRef] [PubMed]
- Haaland, B.; Steenstrup, S.E.; Bere, T.; Bahr, R.; Nordsletten, L. Injury rate and injury patterns in FIS World Cup Alpine skiing (2006–2015): Have the new ski regulations made an impact? Br. J. Sports Med. 2016, 50, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Flørenes, T.W.; Bere, T.; Nordsletten, L.; Heir, S.; Bahr, R. Injuries among male and female World Cup alpine skiers. Br. J. Sports Med. 2009, 43, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Ardern, C.L.; Taylor, N.F.; Feller, J.A.; Webster, K.E. Return-to-sport outcomes at 2 to 7 years after anterior cruciate ligament reconstruction surgery. Am. J. Sports Med. 2012, 40, 41–48. [Google Scholar] [CrossRef]
- Ardern, C.L.; Taylor, N.F.; Feller, J.A.; Webster, K.E. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: An updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br. J. Sports Med. 2014, 48, 1543–1552. [Google Scholar] [CrossRef]
- Morris, N.; da Silva Torres, R.; Heard, M.; Doyle Baker, P.; Herzog, W.; Jordan, M.J. Return to On-Snow Performance in Ski Racing After Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2025, 53, 640–648. [Google Scholar] [CrossRef]
- Goru, P.; Talha, S.; Majeed, H. Outcomes and Return to Sports Following the Ankle Lateral Ligament Reconstruction in Professional Athletes: A Systematic Review of the Literature. Indian J. Orthop. 2022, 56, 208–215. [Google Scholar] [CrossRef]
- Ishøi, L.; Thorborg, K.; Kraemer, O.; Hölmich, P. Return to Sport and Performance After Hip Arthroscopy for Femoroacetabular Impingement in 18- to 30-Year-Old Athletes: A Cross-sectional Cohort Study of 189 Athletes. Am. J. Sports Med. 2018, 46, 2578–2587. [Google Scholar] [CrossRef] [PubMed]
- Reiman, M.P.; Peters, S.; Sylvain, J.; Hagymasi, S.; Mather, R.C.; Goode, A.P. Femoroacetabular impingement surgery allows 74% of athletes to return to the same competitive level of sports participation but their level of performance remains unreported: A systematic review with meta-analysis. Br. J. Sports Med. 2018, 52, 972–981. [Google Scholar] [CrossRef] [PubMed]
- Haida, A.; Coulmy, N.; Dor, F.; Antero-Jacquemin, J.; Marc, A.; Ledanois, T.; Tourny, C.; Rousseaux-Blanchi, M.P.; Chambat, P.; Sedeaud, A.; et al. Return to Sport Among French Alpine Skiers After an Anterior Cruciate Ligament Rupture: Results From 1980 to 2013. Am. J. Sports Med. 2016, 44, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Csapo, R.; Runer, A.; Hoser, C.; Fink, C. Contralateral ACL tears strongly contribute to high rates of secondary ACL injuries in professional ski racers. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 1805–1812. [Google Scholar] [CrossRef]
- Ardern, C.L.; Glasgow, P.; Schneiders, A.; Witvrouw, E.; Clarsen, B.; Cools, A.; Gojanovic, B.; Griffin, S.; Khan, K.M.; Moksnes, H.; et al. 2016 Consensus statement on return to sport from the First World Congress in Sports Physical Therapy, Bern. Br. J. Sports Med. 2016, 50, 853–864. [Google Scholar] [CrossRef]
- Grindem, H.; Snyder-Mackler, L.; Moksnes, H.; Engebretsen, L.; Risberg, M.A. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: The Delaware-Oslo ACL cohort study. Br. J. Sports Med. 2016, 50, 804–808. [Google Scholar] [CrossRef]
- Kaplan, Y.; Witvrouw, E. When Is It Safe to Return to Sport After ACL Reconstruction? Reviewing the Criteria. Sports Health 2019, 11, 301–305. [Google Scholar] [CrossRef]
- Gokeler, A.; Grassi, A.; Hoogeslag, R.; van Houten, A.; Bolling, C.; Buckthorpe, M.; Norte, G.; Benjaminse, A.; Heuvelmans, P.; Di Paolo, S.; et al. Return to sports after ACL injury 5 years from now: 10 things we must do. J. Exp. Orthop. 2022, 9, 73. [Google Scholar] [CrossRef]
- Niederer, D.; Engeroff, T.; Wilke, J.; Vogt, L.; Banzer, W. Return to play, performance, and career duration after anterior cruciate ligament rupture: A case-control study in the five biggest football nations in Europe. Scand. J. Med. Sci. Sports 2018, 28, 2226–2233. [Google Scholar] [CrossRef]
- Meredith, S.J.; Rauer, T.; Chmielewski, T.L.; Fink, C.; Diermeier, T.; Rothrauff, B.B.; Svantesson, E.; Hamrin Senorski, E.; Hewett, T.E.; Sherman, S.L.; et al. Return to Sport After Anterior Cruciate Ligament Injury: Panther Symposium ACL Injury Return to Sport Consensus Group. Orthop. J. Sports Med. 2020, 8, 2325967120930829. [Google Scholar] [CrossRef]
- Cross, M.R.; Rivière, J.R.; Coulmy, N.; Morin, J.B.; Samozino, P. Lower limb force-production capacities in alpine skiing disciplines. Scand. J. Med. Sci. Sports 2021, 31, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Ferland, P.M.; Comtois, A.S. Athletic Profile of Alpine Ski Racers: A Systematic Review. J. Strength Cond. Res. 2018, 32, 3574–3583. [Google Scholar] [CrossRef] [PubMed]
- Hübner, K. Veränderung der Explosivkraft der unteren Extremitäten in Abhängigkeit vom Widerstand—Studie bei Schweizer Spitzensportlern aus Sportarten mit Hohem Explosivkraftanteil. Ph.D.Thesis, Universität Leipzig, Leipzig, Germany, 2009. [Google Scholar]
- Maier, T.; Gross, M.; Trösch, S.; Steiner, T.; Müller, B.; Bourban, P.; Schärer, C.; Hübner, K.; Wehrlin, J.; Tschopp, M. Manual Leistungsdiagnostik; Swiss Olympic: Ittigen, Switzerland, 2016; Available online: https://www.swissolympic.ch/dam/jcr:b15b191a-eb0d-46e8-b9c0-417b887a440d/Leistungsdiagnostik_Manual_160201_DE.pdf (accessed on 18 May 2024).
- Flørenes, T.W.; Nordsletten, L.; Heir, S.; Bahr, R. Recording injuries among World Cup skiers and snowboarders: A methodological study. Scand. J. Med. Sci. Sports 2011, 21, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Bahr, R.; Clarsen, B.; Derman, W.; Dvorak, J.; Emery, C.A.; Finch, C.F.; Hägglund, M.; Junge, A.; Kemp, S.; Khan, K.M.; et al. International Olympic Committee consensus statement: Methods for recording and reporting of epidemiological data on injury and illness in sport 2020 (including STROBE Extension for Sport Injury and Illness Surveillance (STROBE-SIIS)). Br. J. Sports Med. 2020, 54, 372–389. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef]
- Grindem, H.; Eitzen, I.; Engebretsen, L.; Snyder-Mackler, L.; Risberg, M.A. Nonsurgical or Surgical Treatment of ACL Injuries: Knee Function, Sports Participation, and Knee Reinjury: The Delaware-Oslo ACL Cohort Study. J. Bone Jt. Surg. 2014, 96, 1233–1241. [Google Scholar] [CrossRef]
- Drake, D.; Kennedy, R.; Wallace, E. The Validity and Responsiveness of Isometric Lower Body Multi-Joint Tests of Muscular Strength: A Systematic Review. Sports Med. Open 2017, 3, 23. [Google Scholar] [CrossRef]
- Jordan, M.J.; Morris, N.; Nimphius, S.; Aagaard, P.; Herzog, W. Attenuated Lower Limb Stretch-Shorten-Cycle Capacity in ACL Injured vs. Non-Injured Female Alpine Ski Racers: Not Just a Matter of Between-Limb Asymmetry. Front. Sports Act. Living 2022, 4, 853701. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Frizziero, A.; Roi, G.S. Update on functional recovery process for the injured athlete: Return to sport continuum redefined. Br. J. Sports Med. 2019, 53, 265–267. [Google Scholar] [CrossRef]
- Bahr, R. Why screening tests to predict injury do not work-and probably never will…: A critical review. Br. J. Sports Med. 2016, 50, 776–780. [Google Scholar] [CrossRef]
- Hunter, S.K.; Angadi, S.S.; Bhargava, A.; Harper, J.; Hirschberg, A.L.; Levine, B.D.; Moreau, K.L.; Nokoff, N.J.; Stachenfeld, N.S.; Bermon, S. The Biological Basis of Sex Differences in Athletic Performance: Consensus Statement for the American College of Sports Medicine. Med. Sci. Sports Exerc. 2023, 55, 2328–2360. [Google Scholar] [CrossRef]


| Total (n = 56) | Females (n = 31) | Males (n = 25) | ||||
|---|---|---|---|---|---|---|
| Age [years] | 22.3 | ±3.0 | 22.1 | ±3.5 | 22.5 | ±2.5 |
| Height [cm] | 172.7 | ±8.4 | 166.8 | ±4.3 | 180.0 | ±6.0 |
| Body Mass [kg] | 75.1 | ±10.9 | 67.3 | ±6.8 | 84.7 | ±6.1 |
| Parameter | Group | n | T1 Mean | SD | n | T2 Mean | SD |
|---|---|---|---|---|---|---|---|
| Fmax_70 | n_INJ | 32 | 26.2 | ±2.3 | 32 | 26.4 | ±2.2 |
| p_INJ | 24 | 25.1 | ±2.5 | 23 | 25.4 | ±2.7 | |
| Fmax_100 | n_INJ | 29 | 37.5 | ±4.4 | 32 | 37.7 | ±4.7 |
| p_INJ | 21 | 36.4 | ±4.1 | 22 | 35.7 | ±3.6 | |
| CMJ_Pmax_0 | n_INJ | 32 | 58.3 | ±8.5 | 31 | 58.8 | ±10.2 |
| p_INJ | 23 | 54.8 | ±7.3 | 23 | 52.9 | ±8.2 | |
| CMJ_Pmax_100 | n_INJ | 26 | 52.3 | ±6.2 | 29 | 51.7 | ±7.6 |
| p_INJ | 17 | 48.2 | ±7.4 | 21 | 47.3 | ±6.5 | |
| SJ_Pmax_0 | n_INJ | 32 | 54.0 | ±7.2 | 31 | 53.8 | ±9.3 |
| p_INJ | 23 | 51.7 | ±6.7 | 23 | 50.7 | ±7.8 | |
| SJ_Pmax_100 | n_INJ | 26 | 49.1 | ±6.1 | 28 | 48.1 | ±8.0 |
| p_INJ | 17 | 45.3 | ±6.9 | 21 | 43.1 | ±6.4 |
| Parameter | T1 | T2 | ||||
|---|---|---|---|---|---|---|
| p | r | p | r | |||
| Fmax_70 | 0.022 | * | 0.36 | 0.072 | 0.29 | |
| Fmax_100 | 0.435 | 0.13 | 0.191 | 0.21 | ||
| CMJ_Pmax_0 | 0.093 | 0.27 | 0.017 | * | 0.38 | |
| CMJ_Pmax_100 | 0.035 | * | 0.39 | 0.038 | * | 0.35 |
| SJ_Pmax_0 | 0.155 | 0.23 | 0.210 | 0.20 | ||
| SJ_Pmax_100 | 0.047 | * | 0.36 | 0.023 | * | 0.38 |
| Parameter | Sex | N_INJ | P_INJ | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| T1 | T2 | T1 | T2 | ||||||||||
| n | Mean | SD | n | Mean | SD | n | Mean | SD | n | Mean | SD | ||
| Body Mass | f | 14 | 65.7 | ±7.2 | 14 | 66.9 | ±7.6 | 17 | 67.2 | ±7.3 | 17 | 67.7 | ±6.4 |
| m | 18 | 83.7 | ±7.2 | 18 | 84.3 | ±6.4 | 7 | 87.0 | ±4.8 | 7 | 85.8 | ±5.8 | |
| Fmax_70 | f | 14 | 25.0 | ±2.7 | 14 | 25.1 | ±2.0 | 17 | 24.2 | ±1.8 | 16 | 24.2 | ±1.9 |
| m | 18 | 27.1 | ±1.5 | 18 | 27.4 | ±1.8 | 7 | 27.4 | ±2.5 | 7 | 28.0 | ±2.3 | |
| Fmax_100 | f | 12 | 37.3 | ±5.5 | 14 | 36.1 | ±3.9 | 16 | 35.7 | ±3.4 | 16 | 35.0 | ±3.8 |
| m | 17 | 37.6 | ±3.6 | 18 | 38.9 | ±5.0 | 5 | 38.9 | ±5.3 | 6 | 37.6 | ±2.3 | |
| CMJ_Pmax_0 | f | 14 | 52.7 | ±6.8 | 13 | 51.5 | ±6.4 | 16 | 52.5 | ±4.8 | 16 | 49.6 | ±6.4 |
| m | 18 | 62.7 | ±7.1 | 18 | 64.1 | ±9.2 | 7 | 60.1 | ±9.7 | 7 | 60.5 | ±6.9 | |
| CMJ_Pmax_100 | f | 9 | 48.6 | ±4.7 | 11 | 46.6 | ±4.9 | 12 | 45.2 | ±4.0 | 14 | 44.3 | ±4.6 |
| m | 17 | 54.3 | ±6.1 | 18 | 54.9 | ±7.3 | 5 | 55.4 | ±9.1 | 7 | 53.3 | ±5.5 | |
| SJ_Pmax_0 | f | 14 | 49.8 | ±6.6 | 13 | 47.8 | ±6.2 | 16 | 49.2 | ±4.1 | 16 | 47.6 | ±6.7 |
| m | 18 | 57.3 | ±6.0 | 18 | 58.1 | ±8.8 | 7 | 57.2 | ±8.4 | 7 | 57.7 | ±5.5 | |
| SJ_Pmax_100 | f | 9 | 46.2 | ±5.1 | 10 | 42.6 | ±6.1 | 12 | 42.5 | ±4.2 | 14 | 40.2 | ±4.2 |
| m | 17 | 50.6 | ±6.2 | 18 | 51.2 | ±7.3 | 5 | 52.1 | ±7.8 | 7 | 48.9 | ±6.4 | |
| Parameter | n_INJ | p_INJ | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| T1 | T2 | T1 | T2 | |||||||||
| p | r | p | r | p | r | p | r | |||||
| Body Mass | <0.001 | *** | 0.89 | <0.001 | *** | 0.91 | <0.001 | *** | 0.97 | <0.001 | *** | 0.97 |
| Fmax_70 | 0.034 | * | 0.44 | 0.002 | ** | 0.64 | 0.003 | ** | 0.75 | 0.001 | ** | 0.80 |
| Fmax_100 | 0.777 | 0.07 | 0.135 | 0.32 | 0.130 | 0.48 | 0.154 | 0.42 | ||||
| CMJ_Pmax_0 | <0.001 | *** | 0.73 | <0.001 | *** | 0.81 | 0.089 | 0.46 | 0.004 | ** | 0.75 | |
| CMJ_Pmax_100 | 0.011 | * | 0.61 | 0.003 | ** | 0.66 | 0.027 | * | 0.70 | 0.002 | ** | 0.82 |
| SJ_Pmax_0 | 0.002 | ** | 0.62 | <0.001 | *** | 0.72 | 0.015 | * | 0.64 | 0.003 | ** | 0.77 |
| SJ_Pmax_100 | 0.133 | 0.37 | 0.004 | ** | 0.66 | 0.037 | * | 0.67 | 0.007 | ** | 0.71 | |
| SJ_Pmax_100 | 0.133 | 0.37 | 0.004 | ** | 0.66 | 0.037 | * | 0.67 | 0.007 | ** | 0.71 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trachsel, S.; Gross, M.; Bruhin, B.; Baur, H.; Hübner, K. Maximal and Explosive Strength of High-Level Alpine Skiers After Severe Lower Extremity Injury: A Retrospective Comparison with Non-Injured Skiers. Sports 2025, 13, 450. https://doi.org/10.3390/sports13120450
Trachsel S, Gross M, Bruhin B, Baur H, Hübner K. Maximal and Explosive Strength of High-Level Alpine Skiers After Severe Lower Extremity Injury: A Retrospective Comparison with Non-Injured Skiers. Sports. 2025; 13(12):450. https://doi.org/10.3390/sports13120450
Chicago/Turabian StyleTrachsel, Simon, Micah Gross, Björn Bruhin, Heiner Baur, and Klaus Hübner. 2025. "Maximal and Explosive Strength of High-Level Alpine Skiers After Severe Lower Extremity Injury: A Retrospective Comparison with Non-Injured Skiers" Sports 13, no. 12: 450. https://doi.org/10.3390/sports13120450
APA StyleTrachsel, S., Gross, M., Bruhin, B., Baur, H., & Hübner, K. (2025). Maximal and Explosive Strength of High-Level Alpine Skiers After Severe Lower Extremity Injury: A Retrospective Comparison with Non-Injured Skiers. Sports, 13(12), 450. https://doi.org/10.3390/sports13120450

