The Impact of Landing Complexity and Knee Taping on Stability: A Continuous Kinetics and Kinematics Analysis †
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Biomechanical Analysis
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Landing Force
3.2. Stability Indices
3.3. Joint Angles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| APSI | Anteroposterior stability index |
| CMJ | Countermovement jump |
| CoM | Centre of mass |
| DL | Drop landing |
| DJL | Drop jump landing |
| DPS | Dynamic postural stability |
| DPSI | Dynamic postural stability index |
| DT | Dynamic tape |
| GRF | Ground reaction force |
| KT | Kinesio tape |
| MLSI | Mediolateral stability index |
| NT | No tape |
| RT | Rigid tape |
| RSI | Reactive strength index |
| SPM1d | One-dimensional statistical parametric mapping |
| TTS | Time to stabilisation |
| VSI | Vertical stability index |
References
- Toussaint, T.D.; Schepens, B. Biomechanical behavior of the lower limbs and of the joints when landing from different heights. J. Biomech. 2024, 165, 112014. [Google Scholar] [CrossRef] [PubMed]
- Gambelli, C.N.; Theisen, D.; Willems, P.A.; Schepens, B. Motor Control of Landing from a Jump in Simulated Hypergravity. PLoS ONE 2015, 10, e0141574. [Google Scholar]
- Niu, W.; Zhang, M.; Fan, Y.; Zhao, Q. Dynamic postural stability for double-leg drop landing. J. Sports Sci. 2013, 31, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Hovey, S.; Wang, H.; Judge, L.W.; Avedesian, J.M.; Dickin, D.C. The effect of landing type on kinematics and kinetics during single-leg landings. Sports Biomech. 2021, 20, 543–559. [Google Scholar]
- Giesche, F.; Wilke, J.; Engeroff, T.; Niederer, D.; Hohmann, H.; Vogt, L.; Banzer, W. Are biomechanical stability deficits during unplanned single-leg landings related to specific markers of cognitive function? J. Sci. Med. Sport 2020, 23, 82–88. [Google Scholar]
- Lin, J.Z.; Tai, W.H.; Chiu, L.Y.; Lin, Y.A.; Lee, H.J. The Effect of Divided Attention with Bounce Drop Jump on Dynamic Postural Stability. Int. J. Sports Med. 2020, 41, 776–782. [Google Scholar]
- Chang, J.S.; Nam, S.M. Biomechanical Comparison of Lower Extremities between Drop Landing and Landing after Jumping. PNF Mov. 2024, 22, 387–393. [Google Scholar]
- Ishida, T.; Koshino, Y.; Yamanaka, M.; Ueno, R.; Taniguchi, S.; Samukawa, M.; Saito, H.; Matsumoto, H.; Aoki, Y.; Tohyama, H. The effects of a subsequent jump on the knee abduction angle during the early landing phase. BMC Musculoskelet. Disord. 2018, 19, 379. [Google Scholar] [CrossRef]
- Mache, M.A.; Hoffman, M.A.; Hannigan, K.; Golden, G.M.; Pavol, M.J. Effects of decision making on landing mechanics as a function of task and sex. Clin. Biomech. 2013, 28, 104–109. [Google Scholar] [CrossRef]
- Chiu, L.Z.F.; Moolyk, A.N. Segment Kinematics Differ Between Jump and Drop Landings Regardless of Practice. J. Appl. Biomech. 2015, 31, 357–362. [Google Scholar] [CrossRef]
- Harry, J.R.; Freedman Silvernail, J.; Mercer, J.A.; Dufek, J.S. Bilateral Comparison of Vertical Jump Landings and Step-off Landings from Equal Heights. J. Strength Cond. Res. 2018, 32, 1937–1947. [Google Scholar] [CrossRef]
- Afifi, M.; Hinrichs, R.N. A Mechanics Comparison Between Landing from a Countermovement Jump and Landing from Stepping Off a Box. J. Appl. Biomech. 2012, 28, 1–9. [Google Scholar] [CrossRef]
- Harry, J.R.; Lanier, R.; Nunley, B.; Blinch, J. Focus of attention effects on lower extremity biomechanics during vertical jump landings. Hum. Mov. Sci. 2019, 68, 102521. [Google Scholar] [CrossRef] [PubMed]
- Almonroeder, T.G.; Kernozek, T.; Cobb, S.; Slavens, B.; Wang, J.; Huddleston, W. Cognitive Demands Influence Lower Extremity Mechanics During a Drop Vertical Jump Task in Female Athletes. J. Orthop. Sports Phys. Ther. 2018, 48, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Monfort, S.M.; Pradarelli, J.J.; Grooms, D.R.; Hutchison, K.A.; Onate, J.A.; Chaudhari, A.M.W. Visual-Spatial Memory Deficits Are Related to Increased Knee Valgus Angle During a Sport-Specific Sidestep Cut. Am. J. Sports Med. 2019, 47, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Letchford, E.C. The Second Landing from a Drop Vertical Jump: A Biomechanical Analysis and Clinical Application to Enhance Evaluation of ACL Injury Risk in Female Athletes. Ph.D. Thesis, University of Hawaii at Manoa, Honolulu, HI, USA, 2020. [Google Scholar]
- McNeill, W.; Pedersen, C. Dynamic tape. Is it all about controlling load? J. Bodyw. Mov. Ther. 2016, 20, 179–188. [Google Scholar] [CrossRef]
- Silva, R.O.; Carlos, F.R.; Morales, M.C.; Emerick, V.d.S.; Teruyu, A.I.; Valadão, V.M.A.; Carvalho, L.C.; Lobato, D.F. Effect of two Dynamic TapeTM applications on the electromyographic activity of the gluteus medius and functional performance in women: A randomized, controlled, clinical trial. J. Bodyw. Mov. Ther. 2021, 25, 212–217. [Google Scholar] [CrossRef]
- Limroongreungrat, W.; Boonkerd, C. Immediate effect of ACL kinesio taping technique on knee joint biomechanics during a drop vertical jump: A randomized crossover controlled trial. BMC Sports Sci. Med. Rehabil. 2019, 11, 32. [Google Scholar] [CrossRef]
- Rosen, A.B.; Ko, J.; Brown, C.N. Single-limb landing biomechanics are altered and patellar tendinopathy related pain is reduced with acute infrapatellar strap application. Knee 2017, 24, 761–767. [Google Scholar] [CrossRef]
- Rajasekar, S.; Kumar, A.; Patel, J.; Ramprasad, M.; Samuel, A.J. Does Kinesio taping correct exaggerated dynamic knee valgus? A randomized double blinded sham-controlled trial. J. Bodyw. Mov. Ther. 2018, 22, 727–732. [Google Scholar] [CrossRef]
- Saki, F.; Romiani, H.; Ziya, M.; Gheidi, N. The effects of gluteus medius and tibialis anterior kinesio taping on postural control, knee kinematics, and knee proprioception in female athletes with dynamic knee valgus. Phys. Ther. Sport 2022, 53, 84–90. [Google Scholar] [CrossRef]
- Yona, T.; Kamel, N.; Cohen-Eick, G.; Ovadia, I.; Fischer, A. One-dimension statistical parametric mapping in lower limb biomechanical analysis: A systematic scoping review. Gait Posture 2024, 109, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Honert, E.C.; Pataky, T.C. Timing of gait events affects whole trajectory analyses: A statistical parametric mapping sensitivity analysis of lower limb biomechanics. J. Biomech. 2021, 119, 110329. [Google Scholar] [CrossRef] [PubMed]
- Slovák, L.; Zahradník, D.; Land, W.M.; Sarvestan, J.; Hamill, J.; Abdollahipour, R. Response of Knee Joint Biomechanics to Landing Under Internal and External Focus of Attention in Female Volleyball Players. Mot. Control 2024, 28, 341–361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, D.; Gao, X.; Zhou, H.; Baker, J.S.; Radak, Z.; Gu, Y. Differences of simulated ankle dorsiflexion limitation on lower extremity biomechanics during long jump takeoff. Heliyon 2025, 11, e41009. [Google Scholar] [CrossRef]
- Bi, G.; Hua, L.; Sun, J.; Xu, Q.; Li, G. Impact of different landing heights on the contact force in the medial tibiofemoral compartment and the surrounding muscle force characteristics in drop jumps. PLoS ONE 2024, 19, e0307538. [Google Scholar]
- Hughes, S.; Warmenhoven, J.; Haff, G.G.; Chapman, D.W.; Nimphius, S. Countermovement Jump and Squat Jump Force-Time Curve Analysis in Control and Fatigue Conditions. J. Strength Cond. Res. 2022, 36, 2752–2761. [Google Scholar]
- De Ridder, R.; Willems, T.; Vanrenterghem, J.; Roosen, P. Effect of Tape on Dynamic Postural Stability in Subjects with Chronic Ankle Instability. Int. J. Sports Med. 2015, 36, 321–326. [Google Scholar] [CrossRef]
- Szeles, K.T.; Green, A. Strapping for knee stability: Kinetic and kinematic comparisons of dynamic, rigid, and kinesio taping. J. Phys. Educ. Sport 2025, 25, 110–119. [Google Scholar]
- Hendry, D.; Campbell, A.; Ng, L.; Grisbrook, T.L.; Hopper, D.M. Effect of Mulligan’s and Kinesio knee taping on adolescent ballet dancers knee and hip biomechanics during landing. Scand. J. Med. Sci. Sports 2015, 25, 888–896. [Google Scholar]
- Howe, A.; Campbell, A.; Ng, L.; Hall, T.; Hopper, D. Effects of two different knee tape procedures on lower-limb kinematics and kinetics in recreational runners. Scand. J. Med. Sci. Sports 2015, 25, 517–524. [Google Scholar]
- Torres, R.; Trindade, R.; Gonçalves, R.S. The effect of kinesiology tape on knee proprioception in healthy subjects. J. Bodyw. Mov. Ther. 2016, 20, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Whyte, E.F.; Kennelly, P.; Milton, O.; Richter, C.; O’Connor, S.; Moran, K.A. The effects of limb dominance and a short term, high intensity exercise protocol on both landings of the vertical drop jump: Implications for the vertical drop jump as a screening tool. Sports Biomech. 2017, 17, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Ismail, K.T.; Simpson, R.; Comfort, P.; Jones, P.A.; Dos’Santos, T. Physical Profiles of Female Academy Netball Players by Position. J. Strength Cond. Res. 2019, 33, 1601–1608. [Google Scholar] [CrossRef] [PubMed]
- Harry, J.R.; Simms, A.; Hite, M. Establishing Phase Definitions for Jump and Drop Landings and an Exploratory Assessment of Performance-Related Metrics to Monitor During Testing. J. Strength Cond. Res. 2024, 38, e62–e71. [Google Scholar] [CrossRef]
- Ross, S.E.; Guskiewicz, K.M. Time to Stabilization: A Method for Analyzing Dynamic Postural Stability. Athl. Ther. Today 2003, 8, 37–39. [Google Scholar] [CrossRef]
- Wikstrom, E.A.; Tillman, M.D.; Smith, A.N.; Borsa, P.A. A new force-plate technology measure of dynamic postural stability: The dynamic postural stability index. J. Athl. Train. 2005, 40, 305–309. [Google Scholar]
- Pataky, T. Introduction SPM1d 0.4 Documentation. 2022. Available online: https://spm1d.org/ (accessed on 30 July 2025).
- Di Giminiani, R.; Giovannelli, A.; Capuano, L.; Izzicupo, P.; Di Blasio, A.; Masedu, F. Neuromuscular Strategies in Stretch–Shortening Exercises with Increasing Drop Heights: The Role of Muscle Coactivation in Leg Stiffness and Power Propulsion. Int. J. Environ. Res. Public Health 2020, 17, 8647. [Google Scholar] [CrossRef]
- Mackay, G.J.K.; Stearne, S.M.; Wild, C.Y.; Nugent, E.P.; Murdock, A.P.; Mastaglia, B.; Hall, T.M. Mulligan Knee Taping Using Both Elastic and Rigid Tape Reduces Pain and Alters Lower Limb Biomechanics in Female Patients with Patellofemoral Pain. Orthop. J. Sports Med. 2020, 8, 2325967120921673. [Google Scholar] [CrossRef]
- Wu, C.K.; Lin, Y.C.; Chen, Y.L.; Chao, Y.P.; Hsieh, T.H. The Influence of Dynamic Taping on Landing Biomechanics after Fatigue in Young Football Athletes: A Randomized, Sham-Controlled Crossover Trial. Bioengineering 2024, 11, 631. [Google Scholar] [CrossRef]
- Belcher, S.; Whatman, C.; Brughelli, M. A systematic video analysis of 21 anterior cruciate ligament injuries in elite netball players during games. Sports Biomech. 2024, 23, 2546–2563. [Google Scholar] [CrossRef]






| Condition | Landing Comparison | Phase (%) | p-Value |
|---|---|---|---|
| NT | DL > DJL | 0–3% | 0.0004 |
| NT | DL > CMJ | 0–2%; 18–25% | 0.0009; 0.000002 |
| NT | DJL < CMJ | 0–3% | 0.0007 |
| DL | DJL * | CMJ | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| NT | RT | DT | KT | NT | RT | DT | KT | NT | RT | DT | KT | |
| Peak Landing force (N/BW) | 2.28 ±0.62 | 2.17 ±0.57 | 2.34 ±0.64 | 2.30 ±0.68 | 1.95 ±0.62 | 1.78 ±0.75 | 1.79 ±0.67 † | 1.92 ±0.68 † | 2.04 ±0.60 | 1.93 ±0.48 | 2.01 ±0.48 | 2.02 ±0.58 |
| Drop Landing | Drop Jump | Countermovement Jump | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| NT | RT | DT | KT | NT | RT | DT | KT | NT | RT | DT | KT | |
| TTS * | 1.49 ±0.28 | 1.54 ±0.33 | 1.44 ±0.28 | 1.43 ±0.34 | 1.51 ±0.36 | 1.33 ±0.34 † | 1.27 ±0.36 † | 1.19 ±0.30 † | 1.45 ±0.25 | 1.51 ±0.29 | 1.43 ±0.23 | 1.40 ±0.23 |
| DPSI * | 0.26 ±0.06 | 0.30 ±0.05 | 0.37 ±0.11 | 0.31 ±0.07 | 0.59 ±0.18 † | 0.57 ±0.15 † | 0.58 ±0.17 † | 0.62 ±0.19 † | 0.51 ±0.14 † | 0.52 ±0.14 † | 0.54 ±0.15 † | 0.56 ±0.16 † |
| VSI * | 0.25 ±0.06 | 0.29 ±0.06 | 0.36 ±0.10 | 0.30 ±0.07 | 0.59 ±0.18† | 0.58 ±0.15 † | 0.58 ±0.17 † | 0.62 ±0.19 † | 0.51 ±0.14 † | 0.52 ±0.14 † | 0.54 ±0.15 † | 0.56 ±0.16 † |
| APSI * | 0.06 ±0.01 | 0.06 ±0.01 | 0.08 ±0.01 | 0.06 ±0.01 | 0.03 ±0.03 † | 0.03 ±0.03 † | 0.02 ±0.02 † | 0.04 ±0.05 † | 0.02 ±0.01 † | 0.02 ±0.01 † | 0.02 ±0.004 † | 0.02 ±0.01 † |
| MLSI * | 0.01 ±0.01 | 0.02 ±0.01 | 0.03 ±0.02 | 0.02 ±0.01 | 0.03 ±0.01 † | 0.03 ±0.01 † | 0.05 ±0.07 | 0.06 ±0.07 † | 0.03 ±0.02 | 0.03 ±0.01 † | 0.04 ±0.01 | 0.03 ±0.01 † |
| Joint | Joint Action | Landing Comparison | Phase (%) | p-Value |
|---|---|---|---|---|
| Ankle | Flexion | DL > DJL | 0–4% | p = 0.00069 |
| DL < CMJ | 0–1%; 3–6% | p = 0.00089; p = 0.00068 | ||
| DJL < CMJ | 0–8%; 17–23%; 40–43% | p = 0.00016; p = 0.00042; p = 0.00082 | ||
| Abduction | DL > DJL | 0–4%; 43–89% | p = 0.00073; p < 0.000001 | |
| DJL < CMJ | 0–5%; 32–46% | p = 0.00057; p = 0.00028 | ||
| Rotation | DL > DJL | 0–5% | p = 0.00052 | |
| DL < DJL | 61–64% | p = 0.00083 | ||
| DJL < CMJ | 0–5% | p = 0.00057 |
| Joint | Joint Action | Landing Comparison | Phase (%) | p-Value |
|---|---|---|---|---|
| Knee | Flexion | DL > DJL | 0–15% | p = 0.00002 |
| DL > CMJ | 2–8% | p = 0.00049 | ||
| DJL < CMJ | 0–18% | p = 0.000004 | ||
| Abduction | DL > DJL | 0–5% | p = 0.00041 | |
| Rotation | DL > DJL | 1–3% | p = 0.00086 | |
| DJL < CMJ | 0–5%; 17–23%; 32–46% | p = 0.00055; p = 0.00042; p = 0.000004 |
| Joint | Joint Action | Landing Comparison | Phase (%) | p-Value |
|---|---|---|---|---|
| Hip | Flexion | DL > DJL | 0–16% | p = 0.00040 |
| DL < CMJ | 73–77% | p = 0.000693 | ||
| DJL < CMJ | 0–25% | p = 0.000000198 | ||
| Abduction | DL < CMJ | 13–20% | p = 0.000505 | |
| Rotation | DL > DJL | 1–3%; 5–8% | p = 0.000709; p = 0.00071 |
| Joint | Joint Action | Landing Comparison | Phase (%) | p-Value |
|---|---|---|---|---|
| Ankle | Rotation | NT > KT | 55–90% | p < 0.000001 |
| RT > DT | 0–3% | p = 0.0008 | ||
| RT > KT | 0–14%; 48–100% | p = 0.0001; p < 0.000001 | ||
| Knee | Rotation | NT < DT | 60–86%; 98–100% | p = 0.0000012; p = 0.0009 |
| NT < RT | 41–100% | p < 0.000001 | ||
| RT > DT | 53–100% | p < 0.000001 | ||
| RT > KT | 33%; 37–100% | p = 0.0009; p < 0.000001 | ||
| Hip | Rotation | NT > KT | 0–5% | p = 0.00087 |
| NT > RT | 1–2%; 82–83% | p = 0.0009; p = 0.0009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szeles, K.T.; Green, A. The Impact of Landing Complexity and Knee Taping on Stability: A Continuous Kinetics and Kinematics Analysis. Sports 2025, 13, 431. https://doi.org/10.3390/sports13120431
Szeles KT, Green A. The Impact of Landing Complexity and Knee Taping on Stability: A Continuous Kinetics and Kinematics Analysis. Sports. 2025; 13(12):431. https://doi.org/10.3390/sports13120431
Chicago/Turabian StyleSzeles, Kendra Taryn, and Andrew Green. 2025. "The Impact of Landing Complexity and Knee Taping on Stability: A Continuous Kinetics and Kinematics Analysis" Sports 13, no. 12: 431. https://doi.org/10.3390/sports13120431
APA StyleSzeles, K. T., & Green, A. (2025). The Impact of Landing Complexity and Knee Taping on Stability: A Continuous Kinetics and Kinematics Analysis. Sports, 13(12), 431. https://doi.org/10.3390/sports13120431

