The Optimal Exercise Modality and Dose for Cortisol Reduction in Psychological Distress: A Systematic Review and Network Meta-Analysis
Abstract
1. Introduction
2. Method
2.1. Registration and Protocol
2.2. Search Strategy
2.3. Eligibility Criteria
- (1)
- Studies involving combined interventions, such as exercise alongside pharmacotherapy or psychological treatment;
- (2)
- Insufficient or non-extractable outcome data for quantitative synthesis;
- (3)
- Non-original research, including reviews, protocols, case reports, conference abstracts, and editorials.
2.4. Data Collection and Processing
2.4.1. Data Extraction
2.4.2. Data Coding and Management
2.5. Risk of Bias Assessment and Certainty of Evidence
2.6. Data Synthesis
2.6.1. Pairwise Meta-Analysis
2.6.2. Network Meta-Analysis
2.6.3. Dose–Response Network Meta-Analysis
2.6.4. Additional and Sensitivity Analyses
3. Result
3.1. Studies Included and Characteristics
3.2. Pairwise Meta-Analysis
3.3. Network Meta Analysis
3.4. Dose–Response Relationship
3.5. Additional Analysis
3.6. Risk of Bias
3.7. Certainty of Evidence
4. Discussion
4.1. Comparative Efficacy of Exercise Types and Underlying Mechanisms
4.2. Dose–Response Effects Across Exercise Types
4.3. Clinical Implications
4.4. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACTH | Adrenocorticotropic hormone |
| BDI | Beck Depression Inventory |
| BDNF | brain-derived neurotrophic factor |
| CAE | Continuous aerobic exercise |
| CAR | Cortisol awakening response |
| CG | Control group |
| CIs | Confidence intervals |
| DASSs | Depression Anxiety Stress Scales |
| DIC | Deviance information criterion |
| GABA | γ-aminobutyric acid |
| GR | Glucocorticoid receptor |
| HIIT | High-intensity interval training |
| HPA | Hypothalamic–pituitary–adrenal |
| HRV | Heart rate variability |
| MCE | Multicomponent exercise |
| MCID | Minimum clinically important difference |
| METs | Metabolic equivalents |
| NMA | Network meta-analysis |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| QG | Qigong |
| RCTs | Randomized controlled trials |
| SMDs | Standardized mean differences |
| STAI | State–Trait Anxiety Inventory |
| SUCRA | Surface under the cumulative ranking curve |
| TIDieR | Template for Intervention Description and Replication |
| WHO | World Health Organization |
References
- Ovsiannikova, Y.; Pokhilko, D.; Kerdyvar, V.; Krasnokutsky, M.; Kosolapov, O. Peculiarities of the impact of stress on physical and psychological health. Multidiscip. Sci. J. 2024, 6, 2024ss0711. [Google Scholar] [CrossRef]
- Viertiö, S.; Kiviruusu, O.; Piirtola, M.; Kaprio, J.; Korhonen, T.; Marttunen, M.; Suvisaari, J. Factors contributing to psychological distress in the working population, with a special reference to gender difference. BMC Public Health 2021, 21, 611. [Google Scholar] [CrossRef]
- Pompili, M. On mental pain and suicide risk in modern psychiatry. Ann. Gen. Psychiatry 2024, 23, 6. [Google Scholar] [CrossRef]
- Baranyi, G.; Harron, K.; Rajah, N.; Fitzsimons, E. Self-reported psychological distress in childhood and mental health-related hospital attendance among young adults: A 12-year data linkage cohort study from England. Soc. Psychiatry Psychiatr. Epidemiol. 2025, 60, 1659–1670. [Google Scholar] [CrossRef]
- Zänkert, S.; Bellingrath, S.; Wüst, S.; Kudielka, B.M. HPA axis responses to psychological challenge linking stress and disease: What do we know on sources of intra- and interindividual variability? Psychoneuroendocrinology 2019, 105, 86–97. [Google Scholar] [CrossRef]
- Tsigos, C.; Kyrou, I.; Kassi, E.; Chrousos, G.P. Stress: Endocrine physiology and pathophysiology. In Endotext [Internet]; South MDText.com, Inc.: Dartmouth, MA, USA, 2020. [Google Scholar]
- Guo, H.; Zheng, L.; Xu, H.; Pang, Q.; Ren, Z.; Gao, Y.; Wang, T. Neurobiological links between stress, brain injury, and disease. Oxidative Med. Cell. Longev. 2022, 2022, 8111022. [Google Scholar] [CrossRef]
- McEwen, B.S.; Gianaros, P.J. Stress-and allostasis-induced brain plasticity. Annu. Rev. Med. 2011, 62, 431–445. [Google Scholar] [CrossRef]
- James, K.A.; Stromin, J.I.; Steenkamp, N.; Combrinck, M.I. Understanding the relationships between physiological and psychosocial stress, cortisol and cognition. Front. Endocrinol. 2023, 14, 1085950. [Google Scholar] [CrossRef]
- Tafet, G.E.; Nemeroff, C.B. Pharmacological treatment of anxiety disorders: The role of the HPA axis. Front. Psychiatry 2020, 11, 443. [Google Scholar] [CrossRef]
- Lanfumey, L.; Mongeau, R.; Cohen-Salmon, C.; Hamon, M. Corticosteroid–serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci. Biobehav. Rev. 2008, 32, 1174–1184. [Google Scholar] [CrossRef]
- Williams, D.M. Clinical pharmacology of corticosteroids. Respir. Care 2018, 63, 655–670. [Google Scholar] [CrossRef]
- Stathopoulou, G.; Powers, M.B.; Berry, A.C.; Smits, J.A.; Otto, M.W. Exercise interventions for mental health: A quantitative and qualitative review. Clin. Psychol. Sci. Pract. 2006, 13, 179. [Google Scholar] [CrossRef]
- Yeung, A.; Chan, J.S.; Cheung, J.C.; Zou, L. Qigong and Tai-Chi for mood regulation. Focus 2018, 16, 40–47. [Google Scholar] [CrossRef]
- Wood, C.J.; Clow, A.; Hucklebridge, F.; Law, R.; Smyth, N. Physical fitness and prior physical activity are both associated with less cortisol secretion during psychosocial stress. Anxiety Stress Coping 2018, 31, 135–145. [Google Scholar] [CrossRef]
- Ross, R.E.; Saladin, M.E.; George, M.S.; Gregory, C.M. High-intensity aerobic exercise acutely increases brain-derived neurotrophic factor. Med. Sci. Sports Exerc. 2019, 51, 1698. [Google Scholar] [CrossRef]
- Becker, L.; Semmlinger, L.; Rohleder, N. Resistance training as an acute stressor in healthy young men: Associations with heart rate variability, alpha-amylase, and cortisol levels. Stress 2021, 24, 318–330. [Google Scholar] [CrossRef]
- Beserra, A.H.N.; Kameda, P.; Deslandes, A.C.; Schuch, F.B.; Laks, J.; Moraes, H.S. Can physical exercise modulate cortisol level in subjects with depression? A systematic review and meta-analysis. Trends Psychiatry Psychother. 2018, 40, 360–368. [Google Scholar] [CrossRef]
- Anderson, T.; Wideman, L. Exercise and the Cortisol Awakening Response: A Systematic Review. Sports Med. Open 2017, 3, 37. [Google Scholar] [CrossRef]
- Hayes, L.D.; Grace, F.M.; Baker, J.S.; Sculthorpe, N. Exercise-induced responses in salivary testosterone, cortisol, and their ratios in men: A meta-analysis. Sports Med. 2015, 45, 713–726. [Google Scholar] [CrossRef]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Levine, A.; Zagoory-Sharon, O.; Feldman, R.; Lewis, J.G.; Weller, A. Measuring cortisol in human psychobiological studies. Physiol. Behav. 2007, 90, 43–53. [Google Scholar] [CrossRef]
- Hoffmann, T.C.; Glasziou, P.P.; Boutron, I.; Milne, R.; Perera, R.; Moher, D.; Altman, D.G.; Barbour, V.; Macdonald, H.; Johnston, M. Better reporting of interventions: Template for intervention description and replication (TIDieR) checklist and guide. BMJ 2014, 348, g1687. [Google Scholar] [CrossRef]
- Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions; Wiley: Hoboken, NJ, USA, 2019; Volume 4, p. 14651858. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef]
- Herrmann, S.D.; Willis, E.A.; Ainsworth, B.E.; Barreira, T.V.; Hastert, M.; Kracht, C.L.; Schuna, J.M., Jr.; Cai, Z.; Quan, M.; Tudor-Locke, C. 2024 Adult Compendium of Physical Activities: A third update of the energy costs of human activities. J. Sport Health Sci. 2024, 13, 6–12. [Google Scholar] [CrossRef]
- Lee, I.-M. Dose-response relation between physical activity and fitness: Even a little is good; more is better. JAMA 2007, 297, 2137–2139. [Google Scholar] [CrossRef]
- Sterne, J.A.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Salanti, G.; Del Giovane, C.; Chaimani, A.; Caldwell, D.M.; Higgins, J.P. Evaluating the quality of evidence from a network meta-analysis. PLoS ONE 2014, 9, e99682. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Balduzzi, S.; Rücker, G.; Nikolakopoulou, A.; Papakonstantinou, T.; Salanti, G.; Efthimiou, O.; Schwarzer, G. netmeta: An R package for network meta-analysis using frequentist methods. J. Stat. Softw. 2023, 106, 1–40. [Google Scholar] [CrossRef]
- Pedder, H.; Dias, S.; Bennetts, M.; Boucher, M.; Welton, N.J. Modelling time-course relationships with multiple treatments: Model-based network meta-analysis for continuous summary outcomes. Res. Synth. Methods 2019, 10, 267–286. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Etzioni, R.D.; Kadane, J.B. Bayesian statistical methods in public health and medicine. Annu. Rev. Public Health 1995, 16, 23–41. [Google Scholar] [CrossRef]
- Melsen, W.; Bootsma, M.; Rovers, M.; Bonten, M. The effects of clinical and statistical heterogeneity on the predictive values of results from meta-analyses. Clin. Microbiol. Infect. 2014, 20, 123–129. [Google Scholar] [CrossRef]
- Thorlund, K.; Imberger, G.; Johnston, B.C.; Walsh, M.; Awad, T.; Thabane, L.; Gluud, C.; Devereaux, P.; Wetterslev, J. Evolution of heterogeneity (I2) estimates and their 95% confidence intervals in large meta-analyses. PLoS ONE 2012, 7, e39471. [Google Scholar] [CrossRef]
- Rouse, B.; Chaimani, A.; Li, T. Network meta-analysis: An introduction for clinicians. Intern. Emerg. Med. 2017, 12, 103–111. [Google Scholar] [CrossRef]
- White, I.R. Network meta-analysis. Stata J. 2015, 15, 951–985. [Google Scholar] [CrossRef]
- Salanti, G.; Ades, A.; Ioannidis, J.P. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: An overview and tutorial. J. Clin. Epidemiol. 2011, 64, 163–171. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Barros Dos Santos, A.O.; Pinto de Castro, J.B.; Lima, V.P.; da Silva, E.B.; de Souza Vale, R.G. Effects of physical exercise on low back pain and cortisol levels: A systematic review with meta-analysis of randomized controlled trials. Pain Manag. 2021, 11, 49–57. [Google Scholar] [CrossRef]
- De Nys, L.; Ofosu, E.F.; Ryde, G.C.; Connelly, J.; Whittaker, A.C. Physical Activity Influences Cortisol and Dehydroepiandrosterone (Sulfate) Levels in Older Adults: A Systematic Review and Meta-Analysis. J. Aging Phys. Act. 2023, 31, 330–351. [Google Scholar] [CrossRef]
- Moyers, S.A.; Hagger, M.S. Physical activity and cortisol regulation: A meta-analysis. Biol. Psychol. 2023, 179, 108548. [Google Scholar] [CrossRef]
- Zschucke, E.; Renneberg, B.; Dimeo, F.; Wüstenberg, T.; Ströhle, A. The stress-buffering effect of acute exercise: Evidence for HPA axis negative feedback. Psychoneuroendocrinology 2015, 51, 414–425. [Google Scholar] [CrossRef]
- Tyagi, A.; Cohen, M. Yoga and heart rate variability: A comprehensive review of the literature. Int. J. Yoga 2016, 9, 97–113. [Google Scholar] [CrossRef]
- Papathanassoglou, E.D.; Miltiadous, P.; Karanikola, M.N. May BDNF be implicated in the exercise-mediated regulation of inflammation? Critical review and synthesis of evidence. Biol. Res. Nurs. 2015, 17, 521–539. [Google Scholar] [CrossRef]
- Keller-Wood, M. Hypothalamic-pituitary-adrenal Axis—Feedback control. Compr. Physiol. 2015, 5, 1161–1182. [Google Scholar] [CrossRef]
- Dote-Montero, M.; Carneiro-Barrera, A.; Martinez-Vizcaino, V.; Ruiz, J.R.; Amaro-Gahete, F.J. Acute effect of HIIT on testosterone and cortisol levels in healthy individuals: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2021, 31, 1722–1744. [Google Scholar] [CrossRef]
- Wilczyńska, D.; Walczak-Kozłowska, T.; Santos-Rocha, R.; Laskowski, R.; Szumilewicz, A. Stress is not so bad—Cortisol level and psychological functioning after 8-week HIIT program during pregnancy: A randomized controlled trial. Front. Public Health 2024, 11, 1307998. [Google Scholar] [CrossRef]
- Giordano, R.; Pellegrino, M.; Picu, A.; Bonelli, L.; Balbo, M.; Berardelli, R.; Lanfranco, F.; Ghigo, E.; Arvat, E. Neuroregulation of the hypothalamus-pituitary-adrenal (HPA) axis in humans: Effects of GABA-, mineralocorticoid-, and GH-Secretagogue-receptor modulation. Sci. World J. 2006, 6, 1–11. [Google Scholar] [CrossRef]
- Heidarianpour, A.; Shokri, E.; Sadeghian, E.; Cheraghi, F.; Razavi, Z. Combined training in addition to cortisol reduction can improve the mental health of girls with precocious puberty and obesity. Front. Pediatr. 2023, 11, 1241744. [Google Scholar] [CrossRef]
- Martínez-Díaz, I.C.; Carrasco, L. Neurophysiological stress response and mood changes induced by high-intensity interval training: A pilot study. Int. J. Environ. Res. Public Health 2021, 18, 7320. [Google Scholar] [CrossRef]
- Cadegiani, F.A.; Kater, C.E. Hypothalamic-pituitary-adrenal (HPA) axis functioning in overtraining syndrome: Findings from endocrine and metabolic responses on overtraining syndrome (EROS)—EROS-HPA Axis. Sports Med. Open 2017, 3, 45. [Google Scholar] [CrossRef] [PubMed]
- Ponzio, E.; Sotte, L.; D’Errico, M.M.; Berti, S.; Barbadoro, P.; Prospero, E.; Minelli, A. Qi-gong training reduces basal and stress-elicited cortisol secretion in healthy older adults. Eur. J. Integr. Med. 2015, 7, 194–201. [Google Scholar] [CrossRef]





| Type | Recommend (METs-min/Week) | Intensity | Energy Expenditure (METs-Min) | Recommended Accumulation (Minutes/Week) | Exercise Prescription Suggestion (Sessions x Minutes/Week) | ||
|---|---|---|---|---|---|---|---|
| Minimum | Optimal | Minimum | Optimal | ||||
| Overall | 300–530 | Low | 3.5 (code 02034) | 90 | 180 | 3x~30 | 4x~45 |
| 6x~15 | 6x~30 | ||||||
| Moderate | 5.0 (code 02035) | 60 | 120 | 3x~20 | 4x~30 | ||
| 6x~15 | 6x~20 | ||||||
| Vigorous | 7.5 (code 02040) | 45 | 90 | 3x~15 | 3x~30 | ||
| 5x~10 | 6x~15 | ||||||
| Yoga | 180–630 | Low | 2.3 (code 02150) | 80 | 270 | 4x~20 | 4x~70 |
| 5x~16 | 6x~45 | ||||||
| Qigong | 520 | Moderate | 3.3 (code 15670) | 150 | 5x~30 | ||
| 6x~25 | |||||||
| Multicomponent exercise | 640 | Moderate | 5.0 (code 02035) | 120 | 4x~30 | ||
| 6x~20 | |||||||
| Vigorous | 7.5 (code 02040) | 90 | 3x~30 | ||||
| 6x~15 | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Huang, J.; Zhu, F. The Optimal Exercise Modality and Dose for Cortisol Reduction in Psychological Distress: A Systematic Review and Network Meta-Analysis. Sports 2025, 13, 415. https://doi.org/10.3390/sports13120415
Li X, Huang J, Zhu F. The Optimal Exercise Modality and Dose for Cortisol Reduction in Psychological Distress: A Systematic Review and Network Meta-Analysis. Sports. 2025; 13(12):415. https://doi.org/10.3390/sports13120415
Chicago/Turabian StyleLi, Xiongjie, Jianping Huang, and Feilong Zhu. 2025. "The Optimal Exercise Modality and Dose for Cortisol Reduction in Psychological Distress: A Systematic Review and Network Meta-Analysis" Sports 13, no. 12: 415. https://doi.org/10.3390/sports13120415
APA StyleLi, X., Huang, J., & Zhu, F. (2025). The Optimal Exercise Modality and Dose for Cortisol Reduction in Psychological Distress: A Systematic Review and Network Meta-Analysis. Sports, 13(12), 415. https://doi.org/10.3390/sports13120415

