Effect of Oral Versus Nasal Breathing on Muscular Performance, Muscle Oxygenation, and Post-Exercise Recovery
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Protocol
2.2. Oxygenation: Pulse Oximetry (SPO2) and Near-Infrared Spectroscopy (NIRS)
2.3. Flow-Mediated Dilation (FMD)
2.4. Statistical Analysis
3. Results
3.1. Power Output
3.2. Oxygenation
3.3. Flow-Mediated Dilation (FMD)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
aPPO | Average peak power output |
AUC30 | Area under the curve over 30 s |
FMD | Flow-mediated dilation |
NIRS | Near-infrared spectroscopy |
NO | Nitric oxide |
NO2 | Nitrite |
NO3 | Nitrate |
NOS | Nitric oxide synthase and isoforms: neural nNOS, endothelial eNOS, and inducible iNOS |
O2 | Oxygen |
PPO | Peak power output |
SPO2 | Pulse oximetry |
TSI | Total saturation index |
VL | Vastus lateralis muscle |
WAnT | Wingate anaerobic test |
References
- Kuschel, L.B.; Sonnenburg, D.; Engel, T. Factors of Muscle Quality and Determinants of Muscle Strength: A Systematic Literature Review. Healthcare 2022, 10, 1937. [Google Scholar] [CrossRef]
- Fitts, R.H.; McDonald, K.S.; Schluter, J.M. The determinants of skeletal muscle force and power: Their adaptability with changes in activity pattern. J. Biomech. 1991, 24 (Suppl. S1), 111–122. [Google Scholar] [CrossRef]
- Zane, A.C.; Reiter, D.A.; Shardell, M.; Cameron, D.; Simonsick, E.M.; Fishbein, K.W.; Studenski, S.A.; Spencer, R.G.; Ferrucci, L. Muscle strength mediates the relationship between mitochondrial energetics and walking performance. Aging Cell 2017, 16, 461–468. [Google Scholar] [CrossRef]
- Schrack, J.A.; Simonsick, E.M.; Ferrucci, L. The relationship of the energetic cost of slow walking and peak energy expenditure to gait speed in mid-to-late life. Am. J. Phys. Med. Rehabil. 2013, 92, 28–35. [Google Scholar] [CrossRef]
- Lombard, D.B.; Miller, R.A.; Pletcher, S.D. Biology of Aging and Longevity. In Hazzard’s Geriatric Medicine and Gerontology, 8th ed.; Halter, J.B., Ouslander, J.G., Studenski, S., High, K.P., Asthana, S., Supiano, M.A., Ritchie, C.S., Schmader, K., Eds.; McGraw-Hill Education: New York, NY, USA, 2022. [Google Scholar]
- Izquierdo, M.; de Souto Barreto, P.; Arai, H.; Bischoff-Ferrari, H.A.; Cadore, E.L.; Cesari, M.; Chen, L.K.; Coen, P.M.; Courneya, K.S.; Duque, G.; et al. Global consensus on optimal exercise recommendations for enhancing healthy longevity in older adults (ICFSR). J. Nutr. Health Aging 2025, 29, 100401. [Google Scholar] [CrossRef] [PubMed]
- Nejatian Hoseinpour, A.; Bassami, M.; Ahmadizad, S.; Donath, L.; Setayesh, S.; Mirzaei, M.; Mohammad Rahimi, G.R. The influence of resistance training on inflammatory markers, body composition and functional capacity in healthy older adults: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2025, 130, 105731. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Poderoso, J.J.; Helfenberger, K.; Poderoso, C. The effect of nitric oxide on mitochondrial respiration. Nitric Oxide 2019, 88, 61–72. [Google Scholar] [CrossRef]
- Tengan, C.H.; Moraes, C.T. NO control of mitochondrial function in normal and transformed cells. Biochim. Biophys. Acta Bioenerg. 2017, 1858, 573–581. [Google Scholar] [CrossRef]
- Trexler, E.T.; Smith-Ryan, A.E.; Melvin, M.N.; Roelofs, E.J.; Wingfield, H.L. Effects of pomegranate extract on blood flow and running time to exhaustion. Appl. Physiol. Nutr. Metab. 2014, 39, 1038–1042. [Google Scholar] [CrossRef]
- Srihirun, S.; Park, J.W.; Teng, R.; Sawaengdee, W.; Piknova, B.; Schechter, A.N. Nitrate uptake and metabolism in human skeletal muscle cell cultures. Nitric Oxide 2020, 94, 1–8. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Ghasemi, A. Type 2 diabetes-related sarcopenia: Role of nitric oxide. Nutr. Metab. 2024, 21, 107. [Google Scholar] [CrossRef]
- Villanueva, C.; Giulivi, C. Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Radic. Biol. Med. 2010, 49, 307–316. [Google Scholar] [CrossRef]
- Upanan, S.; Lee, J.; Tunau-Spencer, K.J.; Rajvanshi, P.K.; Wright, E.C.; Noguchi, C.T.; Schechter, A.N. High nitrate levels in skeletal muscle contribute to nitric oxide generation via a nitrate/nitrite reductive pathway in mice that lack the nNOS enzyme. Front. Physiol. 2024, 15, 1352242. [Google Scholar] [CrossRef]
- Aktan, F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004, 75, 639–653. [Google Scholar] [CrossRef]
- Kawasumi, T.; Takeno, S.; Ishikawa, C.; Takahara, D.; Taruya, T.; Takemoto, K.; Hamamoto, T.; Ishino, T.; Ueda, T. The Functional Diversity of Nitric Oxide Synthase Isoforms in Human Nose and Paranasal Sinuses: Contrasting Pathophysiological Aspects in Nasal Allergy and Chronic Rhinosinusitis. Int. J. Mol. Sci. 2021, 22, 7561. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Weitzberg, E. Nasal nitric oxide in man. Thorax 1999, 54, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Levenez, M.; Lambrechts, K.; Mrakic-Sposta, S.; Vezzoli, A.; Germonpré, P.; Pique, H.; Virgili, F.; Bosco, G.; Lafère, P.; Balestra, C. Full-Face Mask Use during SCUBA Diving Counters Related Oxidative Stress and Endothelial Dysfunction. Int. J. Environ. Res. Public Health 2022, 19, 965. [Google Scholar] [CrossRef]
- Imai, H.; Hayashi, T.; Negawa, T.; Nakamura, K.; Tomida, M.; Koda, K.; Tajima, T.; Koda, Y.; Suda, K.; Era, S. Strenuous exercise-induced change in redox state of human serum albumin during intensive kendo training. Jpn. J. Physiol. 2002, 52, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Kon, M.; Tanabe, K.; Akimoto, T.; Kimura, F.; Tanimura, Y.; Shimizu, K.; Okamoto, T.; Kono, I. Reducing exercise-induced muscular injury in kendo athletes with supplementation of coenzyme Q10. Br. J. Nutr. 2008, 100, 903–909. [Google Scholar] [CrossRef]
- Desomer, A.; Gerkens, S.; Vinck, I.; Léonard, C.; Neyt, M.; Paulus, D.; Van Brabandt, H. Cardiovascular pre-participation screening in young athletes. In Health Technology Assessment (HTA); Belgian Health Care Knowledge Centre (KCE): Brussels, Belgium, 2015; p. 151. [Google Scholar]
- Zujko, K.; Małek, Ł.A. How to Unmask Hidden Cardiovascular Diseases through Preparticipation Screening in Master Athletes? Rev. Cardiovasc. Med. 2022, 23, 405. [Google Scholar] [CrossRef] [PubMed]
- Hampton, S.M.; Isherwood, C.; Kirkpatrick, V.J.; Lynne-Smith, A.C.; Griffin, B.A. The influence of alcohol consumed with a meal on endothelial function in healthy individuals. J. Hum. Nutr. Diet. 2010, 23, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Naylor, L.H.; Zimmermann, D.; Guitard-Uldry, M.; Poquet, L.; Lévêques, A.; Eriksen, B.; Bel Rhlid, R.; Galaffu, N.; D’Urzo, C.; De Castro, A.; et al. Acute dose-response effect of coffee-derived chlorogenic acids on the human vasculature in healthy volunteers: A randomized controlled trial. Am. J. Clin. Nutr. 2021, 113, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Tesselaar, E.; Nezirevic Dernroth, D.; Farnebo, S. Acute effects of coffee on skin blood flow and microvascular function. Microvasc. Res. 2017, 114, 58–64. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, P.; Meng, L.; Tang, W.; Peng, F. The association between smoking exposure and endothelial function evaluated using flow-mediated dilation values: A meta-analysis. BMC Cardiovasc. Disord. 2024, 24, 292. [Google Scholar] [CrossRef]
- Rognmo, O.; Bjørnstad, T.H.; Kahrs, C.; Tjønna, A.E.; Bye, A.; Haram, P.M.; Stølen, T.; Slørdahl, S.A.; Wisløff, U. Endothelial function in highly endurance-trained men: Effects of acute exercise. J. Strength Cond. Res. 2008, 22, 535–542. [Google Scholar] [CrossRef]
- Zhang, Y.; Chai, S.; Dai, H.; Chen, X.; Meng, Z.; Ying, X. Vascular endothelial function and its response to moderate-intensity aerobic exercise in trained and untrained healthy young men. Sci. Rep. 2024, 14, 20450. [Google Scholar] [CrossRef]
- Zupan, M.F.; Arata, A.W.; Dawson, L.H.; Wile, A.L.; Payn, T.L.; Hannon, M.E. Wingate Anaerobic Test peak power and anaerobic capacity classifications for men and women intercollegiate athletes. J. Strength Cond. Res. 2009, 23, 2598–2604. [Google Scholar] [CrossRef]
- Castañeda-Babarro, A. The Wingate Anaerobic Test, a Narrative Review of the Protocol Variables That Affect the Results Obtained. Appl. Sci. 2021, 11, 7417. [Google Scholar] [CrossRef]
- Ravindrakumar, A.; Bommasamudram, T.; Tod, D.; Edwards, B.J.; Chtourou, H.; Pullinger, S.A. Daily variation in performance measures related to anaerobic power and capacity: A systematic review. Chronobiol. Int. 2022, 39, 421–455. [Google Scholar] [CrossRef] [PubMed]
- Kocsis, L.; Herman, P.; Eke, A. The modified Beer-Lambert law revisited. Phys. Med. Biol. 2006, 51, N91–N98. [Google Scholar] [CrossRef]
- Jones, S.; Chiesa, S.T.; Chaturvedi, N.; Hughes, A.D. Recent developments in near-infrared spectroscopy (NIRS) for the assessment of local skeletal muscle microvascular function and capacity to utilise oxygen. Artery Res. 2016, 16, 25–33. [Google Scholar] [CrossRef]
- Tremblay, J.C.; Pyke, K.E. Flow-mediated dilation stimulated by sustained increases in shear stress: A useful tool for assessing endothelial function in humans? Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H508–H520. [Google Scholar] [CrossRef] [PubMed]
- Germonpré, P.; Pontier, J.M.; Gempp, E.; Blatteau, J.E.; Deneweth, S.; Lafère, P.; Marroni, A.; Balestra, C. Pre-dive vibration effect on bubble formation after a 30-m dive requiring a decompression stop. Aviat. Space Environ. Med. 2009, 80, 1044–1048. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, K.; Germonpré, P.; Vandenheede, J.; Delorme, M.; Lafère, P.; Balestra, C. Mini Trampoline, a New and Promising Way of SCUBA Diving Preconditioning to Reduce Vascular Gas Emboli? Int. J. Environ. Res. Public Health 2022, 19, 5410. [Google Scholar] [CrossRef]
- Areas, G.P.T.; Mazzuco, A.; Caruso, F.R.; Jaenisch, R.B.; Cabiddu, R.; Phillips, S.A.; Arena, R.; Borghi-Silva, A. Flow-mediated dilation and heart failure: A review with implications to physical rehabilitation. Heart Fail. Rev. 2019, 24, 69–80. [Google Scholar] [CrossRef]
- Chinevere, T.D.; Faria, E.W.; Faria, I.E. Nasal splinting effects on breathing patterns and cardiorespiratory responses. J. Sports Sci. 1999, 17, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Morton, A.R.; King, K.; Papalia, S.; Goodman, C.; Turley, K.R.; Wilmore, J.H. Comparison of maximal oxygen consumption with oral and nasal breathing. Aust. J. Sci. Med. Sport 1995, 27, 51–55. [Google Scholar]
- Balestra, C.; Cimino, F.; Theunissen, S.; Snoeck, T.; Provyn, S.; Canali, R.; Bonina, A.; Virgili, F. A red orange extract modulates the vascular response to a recreational dive: A pilot study on the effect of anthocyanins on the physiological consequences of scuba diving. Nat. Prod. Res. 2016, 30, 2101–2106. [Google Scholar] [CrossRef]
- Theunissen, S.; Guerrero, F.; Sponsiello, N.; Cialoni, D.; Pieri, M.; Germonpré, P.; Obeid, G.; Tillmans, F.; Papadopoulou, V.; Hemelryck, W.; et al. Nitric oxide-related endothelial changes in breath-hold and scuba divers. Undersea Hyperb. Med. 2013, 40, 135–144. [Google Scholar]
- Murphy, M.M.; Patton, J.F.; Frederick, F.A. Comparative anaerobic power of men and women. Aviat. Space Environ. Med. 1986, 57, 636–641. [Google Scholar]
- Sauvé, B.; Haugan, M.; Paulsen, G. Physical and Physiological Characteristics of Elite CrossFit Athletes. Sports 2024, 12, 162. [Google Scholar] [CrossRef]
- Serresse, O.; Ama, P.F.; Simoneau, J.A.; Lortie, G.; Bouchard, C.; Boulay, M.R. Anaerobic performances of sedentary and trained subjects. Can. J. Sport Sci. 1989, 14, 46–52. [Google Scholar]
- Hegge, A.M.; Bucher, E.; Ettema, G.; Faude, O.; Holmberg, H.C.; Sandbakk, Ø. Gender differences in power production, energetic capacity and efficiency of elite cross-country skiers during whole-body, upper-body, and arm poling. Eur. J. Appl. Physiol. 2016, 116, 291–300. [Google Scholar] [CrossRef]
- Van Hooren, B.; Van Der Lee, P.; Plasqui, G.; Bongers, B.C. The effect of a standardized verbal encouragement protocol on peak oxygen uptake during incremental treadmill testing in healthy individuals: A randomized cross-over trial. Eur. J. Sport Sci. 2024, 24, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Wann, D.L.; Hackathorn, J. Audience effects in sport: The reciprocal flow of influence between athletes and spectators. In APA Handbook of Sport and Exercise Psychology: Sport Psychology; Anshel, M.H., Petrie, T.A., Steinfeldt, J.A., Eds.; American Psychological Association: Washington, DC, USA, 2019; pp. 469–488. [Google Scholar]
- Roessel, E.L.; Delgado, E.N.; Darling, M.L.; Holmgren, N.J.; Jensen, C.D.; VanNess, J.M. Wingate Test-Retest Variability in Healthy Subjects: 2737 Board #20 June 12:00 PM–3:30 PM. Med. Sci. Sports Exerc. 2018, 50, 666. [Google Scholar] [CrossRef]
- Leicht, A.S.; Sealey, R.M.; Sinclair, W.H. Influence of cycle ergometer type and sex on assessment of 30-second anaerobic capacity and power. Int. J. Sports Med. 2011, 32, 688–692. [Google Scholar] [CrossRef]
- Maud, P.J.; Shultz, B.B. Norms for the Wingate anaerobic test with comparison to another similar test. Res. Q. Exerc. Sport 1989, 60, 144–151. [Google Scholar] [CrossRef]
- Dallam, G.; Kies, B. The effect of nasal breathing versus oral and oronasal breathing during exercise: A review. J. Sports Res. 2020, 7, 1–10. [Google Scholar] [CrossRef]
- Recinto, C.; Efthemeou, T.; Boffelli, P.T.; Navalta, J.W. Effects of Nasal or Oral Breathing on Anaerobic Power Output and Metabolic Responses. Int. J. Exerc. Sci. 2017, 10, 506–514. [Google Scholar] [CrossRef]
- Rasdal, V. Oxygen Consumption in Cycling: The Relationship Between Whole Body Pulmonary O2 Consumption and Muscle Oxygenation in Different Muscles During Constant-Load Cycling. Master’s Thesis, NTNU—Norwegian University of Science and Technology, Trondheim, Norway, 2013. [Google Scholar]
- McLay, K.M.; Fontana, F.Y.; Nederveen, J.P.; Guida, F.F.; Paterson, D.H.; Pogliaghi, S.; Murias, J.M. Vascular responsiveness determined by near-infrared spectroscopy measures of oxygen saturation. Exp. Physiol. 2016, 101, 34–40. [Google Scholar] [CrossRef]
- Soares, R.N.; Somani, Y.B.; Proctor, D.N.; Murias, J.M. The association between near-infrared spectroscopy-derived and flow-mediated dilation assessment of vascular responsiveness in the arm. Microvasc. Res. 2019, 122, 41–44. [Google Scholar] [CrossRef]
- Kiani, A.K.; Bonetti, G.; Medori, M.C.; Caruso, P.; Manganotti, P.; Fioretti, F.; Nodari, S.; Connelly, S.T.; Bertelli, M. Dietary supplements for improving nitric-oxide synthesis. J. Prev. Med. Hyg. 2022, 63, E239–E245. [Google Scholar] [CrossRef]
- Shannon, O.M.; Clifford, T.; Seals, D.R.; Craighead, D.H.; Rossman, M.J. Nitric oxide, aging and aerobic exercise: Sedentary individuals to Master’s athletes. Nitric Oxide 2022, 125–126, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Ichikawa, H.; Ebine, N.; Minamiyama, Y.; Alharbi, A.A.D.; Iwamoto, N.; Fukuoka, Y. Effects of High-Intensity Anaerobic Exercise on the Scavenging Activity of Various Reactive Oxygen Species and Free Radicals in Athletes. Nutrients 2023, 15, 222. [Google Scholar] [CrossRef]
- Liemburg-Apers, D.C.; Willems, P.H.; Koopman, W.J.; Grefte, S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch. Toxicol. 2015, 89, 1209–1226. [Google Scholar] [CrossRef]
- Förstermann, U.; Xia, N.; Li, H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ. Res. 2017, 120, 713–735. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Zheng, X.; Song, Y.; Wu, L.; Li, L.; Tong, R.; Han, L.; Bian, Y. Decoding signaling mechanisms: Unraveling the targets of guanylate cyclase agonists in cardiovascular and digestive diseases. Front. Pharmacol. 2023, 14, 1272073. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Vanhatalo, A. The ‘Critical Power’ Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise. Sports Med. 2017, 47, 65–78. [Google Scholar] [CrossRef]
♀ | ♂ | p | |
---|---|---|---|
Age (Year) | 22.3 ± 2.8 | 23.4 ± 4.0 | 0.72 |
Height (cm) *** | 165.7 ± 5.3 | 179.4 ± 6.1 | <0.001 |
Weight (kg) *** | 60.4 ± 7.2 | 75.2 ± 12.1 | <0.001 |
BMI (kg/m2) | 22.0 ± 2.6 | 23.3 ± 3.0 | 0.18 |
Physical activity (hours/week) | 3.5 ± 3.4 | 3.4 ± 2.3 | 0.80 |
Variables | Oral Breathing | Nasal Breathing | p |
---|---|---|---|
AUC 30 s | 274 ± 146 | 254 ± 124 | 0.55 |
TSI (%) | 13.6 ± 6.52 | 14.4 ± 5.2 | 0.48 |
Desaturation rate (%/sec) | −0.31 ± 0.23 | −0.37 ± 0.19 | 0.34 |
Resaturation rate (%/sec) | 0.23 ± 0.12 | 0.45 ± 0.4 | 0.02 * |
TSI max (%) | 73.1 ± 3.6 | 75.2 ± 4.0 | 0.04 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lévénez, M.; Lévêque, C.; Lafère, C.; Guerrero, F.; Balestra, C.; Lafère, P. Effect of Oral Versus Nasal Breathing on Muscular Performance, Muscle Oxygenation, and Post-Exercise Recovery. Sports 2025, 13, 368. https://doi.org/10.3390/sports13100368
Lévénez M, Lévêque C, Lafère C, Guerrero F, Balestra C, Lafère P. Effect of Oral Versus Nasal Breathing on Muscular Performance, Muscle Oxygenation, and Post-Exercise Recovery. Sports. 2025; 13(10):368. https://doi.org/10.3390/sports13100368
Chicago/Turabian StyleLévénez, Morgan, Clément Lévêque, Capucine Lafère, François Guerrero, Costantino Balestra, and Pierre Lafère. 2025. "Effect of Oral Versus Nasal Breathing on Muscular Performance, Muscle Oxygenation, and Post-Exercise Recovery" Sports 13, no. 10: 368. https://doi.org/10.3390/sports13100368
APA StyleLévénez, M., Lévêque, C., Lafère, C., Guerrero, F., Balestra, C., & Lafère, P. (2025). Effect of Oral Versus Nasal Breathing on Muscular Performance, Muscle Oxygenation, and Post-Exercise Recovery. Sports, 13(10), 368. https://doi.org/10.3390/sports13100368