Proximal Effects of Blood Flow Restriction on Shoulder Muscle Function and Discomfort During Low-Intensity Exercise
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.3.1. Shoulder Range of Motion
2.3.2. Muscle Strength
2.3.3. EMG Activity
2.3.4. Muscle Endurance
2.3.5. Subjective Discomfort and Fatigue
2.4. Statistical Analyses
3. Results
3.1. Muscle Endurance
3.2. Maximal Strength of External Rotation
3.3. EMG Activity
3.4. Subjective Discomfort
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Wengle, L.; Migliorini, F.; Leroux, T.; Chahal, J.; Theodoropoulos, J.; Betsch, M. The effects of blood flow restriction in patients undergoing knee surgery: A systematic review and meta-analysis. Am. J. Sports Med. 2022, 50, 2824–2833. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Wilson, J.M.; Lowery, R.P.; Krieger, J.W. Muscular adaptations in low-versus high-load resistance training: A meta-analysis. Eur. J. Sport Sci. 2016, 16, 1–10. [Google Scholar] [CrossRef]
- Grønfeldt, B.M.; Lindberg Nielsen, J.; Mieritz, R.M.; Lund, H.; Aagaard, P. Effect of blood-flow restricted vs heavy-load strength training on muscle strength: Systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2020, 30, 837–848. [Google Scholar] [CrossRef]
- Rossi, F.E.; De Freitas, M.C.; Zanchi, N.E.; Lira, F.S.; Cholewa, J.M. The role of inflammation and immune cells in blood flow restriction training adaptation: A review. Front. Physiol. 2018, 9, 1376. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Song, Y.; Zhu, J.; Ding, P.; Chen, N. Effectiveness of low-load resistance training with blood flow restriction vs. conventional high-intensity resistance training in older people diagnosed with sarcopenia: A randomized controlled trial. Sci. Rep. 2024, 14, 28427. [Google Scholar] [CrossRef] [PubMed]
- Pope, Z.K.; Willardson, J.M.; Schoenfeld, B.J. Exercise and blood flow restriction. J. Strength Cond. Res. 2013, 27, 2914–2926. [Google Scholar] [CrossRef] [PubMed]
- De Queiros, V.S.; Dantas, M.; Neto, G.R.; da Silva, L.F.; Assis, M.G.; Almeida-Neto, P.F.; Dantas, P.M.S.; de Araújo Tinôco Cabral, B.G. Application and side effects of blood flow restriction technique: A cross-sectional questionnaire survey of professionals. Medicine 2021, 100, e25794. [Google Scholar] [CrossRef]
- Counts, B.R.; Dankel, S.J.; Barnett, B.E.; Kim, D.; Mouser, J.G.; Allen, K.M.; Thiebaud, R.S.; Abe, T.; Bemben, M.G.; Loenneke, J.P. Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve 2016, 53, 438–445. [Google Scholar] [CrossRef]
- Lambert, B.S.; Hedt, C.; Moreno, M.; Harris, J.D.; McCulloch, P. Blood flow restriction therapy for stimulating skeletal muscle growth: Practical considerations for maximizing recovery in clinical rehabilitation settings. Tech. Orthop. 2018, 33, 89–97. [Google Scholar] [CrossRef]
- Yasuda, T.; Fujita, S.; Ogasawara, R.; Sato, Y.; Abe, T. Effects of low-intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: A pilot study. Clin. Physiol. Funct. Imaging 2010, 30, 338–343. [Google Scholar] [CrossRef]
- Lambert, B.; Hedt, C.; Daum, J.; Taft, C.; Chaliki, K.; Epner, E.; McCulloch, P. Blood flow restriction training for the shoulder: A case for proximal benefit. Am. J. Sports Med. 2021, 49, 2716–2728. [Google Scholar] [CrossRef]
- Spanhove, V.; Van Daele, M.; Van den Abeele, A.; Rombaut, L.; Castelein, B.; Calders, P.; Malfait, F.; Cools, A.; De Wandele, I. Muscle activity and scapular kinematics in individuals with multidirectional shoulder instability: A systematic review. Ann. Phys. Rehabil. Med. 2021, 64, 101457. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, H.; Shin, W.-S. Characteristics of shoulder pain, muscle tone and isokinetic muscle function according to the scapular position of elite boxers. Phys. Ther. Rehabil. Sci. 2020, 9, 98–104. [Google Scholar] [CrossRef]
- Kolber, M.J.; Beekhuizen, K.S.; Cheng, M.-S.S.; Hellman, M.A. Shoulder injuries attributed to resistance training: A brief review. J. Strength Cond. Res. 2010, 24, 1696–1704. [Google Scholar] [CrossRef]
- Herda, A.A.; Herda, T.J.; Costa, P.B.; Ryan, E.D.; Stout, J.R.; Cramer, J.T. Muscle performance, size, and safety responses after eight weeks of resistance training and protein supplementation: A randomized, double-blinded, placebo-controlled clinical trial. J. Strength Cond. Res. 2013, 27, 3091–3100. [Google Scholar] [CrossRef]
- Conceição, M.S.; Gáspari, A.F.; Ramkrapes, A.P.; Junior, E.M.; Bertuzzi, R.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.T. Anaerobic metabolism induces greater total energy expenditure during exercise with blood flow restriction. PLoS ONE 2018, 13, e0194776. [Google Scholar] [CrossRef]
- Patterson, S.D.; Hughes, L.; Warmington, S.; Burr, J.; Scott, B.R.; Owens, J.; Abe, T.; Nielsen, J.L.; Libardi, C.A.; Laurentino, G.; et al. Blood flow restriction exercise: Considerations of methodology, application, and safety. Front. Physiol. 2019, 10, 533. [Google Scholar] [PubMed]
- Werner, B.C.; Holzgrefe, R.E.; Griffin, J.W.; Lyons, M.L.; Cosgrove, C.T.; Hart, J.M.; Brockmeier, S.F. Validation of an innovative method of shoulder range-of-motion measurement using a smartphone clinometer application. J. Shoulder Elb. Surg. 2014, 23, e275–e282. [Google Scholar] [CrossRef]
- Donatelli, R.; Ellenbecker, T.S.; Ekedahl, S.R.; Wilkes, J.S.; Kocher, K.; Adam, J. Assessment of shoulder strength in professional baseball pitchers. J. Orthop. Sports Phys. Ther. 2000, 30, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Cadogan, A.; Laslett, M.; Hing, W.; McNair, P.; Williams, M. Reliability of a new hand-held dynamometer in measuring shoulder range of motion and strength. Man. Ther. 2011, 16, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Perotto, A.O. Anatomical Guide for the Electromyographer: The Limbs and Trunk; Charles C Thomas Publisher: Springfield, IL, USA, 2011. [Google Scholar]
- Tsuruike, M.; Ellenbecker, T.S.; Lauffenburger, C. Electromyography activity of the teres minor muscle with varying positions of horizontal abduction in the quadruped position. JSES Int. 2021, 5, 480–485. [Google Scholar] [CrossRef]
- Kim, N.; Jo, S.; Bae, K.; Song, C. Comparison of upper extremity muscle activity between stroke patients and healthy participants while Performing bimanual tasks. Phys. Ther. Rehabil. Sci. 2022, 11, 526–534. [Google Scholar] [CrossRef]
- Alpert, S.W.; Pink, M.M.; Jobe, F.W.; McMahon, P.J.; Mathiyakom, W. Electromyographic analysis of deltoid and rotator cuff function under varying loads and speeds. J. Shoulder Elb. Surg. 2000, 9, 47–58. [Google Scholar] [CrossRef]
- Belbasis, A.; Fuss, F.K. Muscle performance investigated with a novel smart compression garment based on pressure sensor force myography and its validation against EMG. Front. Physiol. 2018, 9, 408. [Google Scholar] [CrossRef]
- Jønsson, A.; Johansen, C.; Rolving, N.; Pfeiffer-Jensen, M. Feasibility and estimated efficacy of blood flow restricted training in female patients with rheumatoid arthritis: A randomized controlled pilot study. Scand. J. Rheumatol. 2021, 50, 169–177. [Google Scholar] [CrossRef]
- Suga, T.; Okita, K.; Morita, N.; Yokota, T.; Hirabayashi, K.; Horiuchi, M.; Takada, S.; Omokawa, M.; Kinugawa, S.; Tsutsui, H. Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. J. Appl. Physiol. 2010, 108, 1563–1567. [Google Scholar] [CrossRef]
- Pearson, S.J.; Hussain, S.R. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015, 45, 187–200. [Google Scholar] [CrossRef]
- Jeno, S.H.; Munjal, A.; Schindler, G.S. Anatomy, shoulder and upper limb, arm supraspinatus muscle. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Soler, F.; Ezagüi, L.; Calvo, A. Anatomy of the Shoulder. In Shoulder Arthroscopy: Principles and Practice; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–16. [Google Scholar]
- McGinniss, J.H.; Mason, J.S.; Morris, J.B.; Pitt, W.; Miller, E.M.; Crowell, M.S. The effect of blood flow restriction therapy on shoulder function following shoulder stabilization surgery: A case series. Int. J. Sports Phys. Ther. 2022, 17, 1144–1155. [Google Scholar] [CrossRef] [PubMed]
- De Queiros, V.S.; de França, I.M.; Trybulski, R.; Vieira, J.G.; Dos Santos, I.K.; Neto, G.R.; Wilk, M.; de Matos, D.G.; de Brito Vieira, W.H.; da Silva Novaes, J.; et al. Myoelectric activity and fatigue in low-load resistance exercise with different pressure of blood flow restriction: A systematic review and meta-analysis. Front. Physiol. 2021, 12, 786752. [Google Scholar] [CrossRef] [PubMed]
- Natsume, T.; Ozaki, H.; Nakagata, T.; Machida, S.; Naito, H. Acute changes in blood lactate concentration, muscle thickness, and strength after walking with blood flow restriction in older adults. Juntendo Med. J. 2016, 62, 237–242. [Google Scholar] [CrossRef]
- Loenneke, J.; Thiebaud, R.; Abe, T.; Bemben, M. Blood flow restriction pressure recommendations: The hormesis hypothesis. Med. Hypotheses 2014, 82, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Beneke, R.; Leithäuser, R.M.; Ochentel, O. Blood lactate diagnostics in exercise testing and training. Int. J. Sports Physiol. Perform. 2011, 6, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Spitz, R.W.; Wong, V.; Bell, Z.W.; Viana, R.B.; Chatakondi, R.N.; Abe, T.; Loenneke, J.P. Blood flow restricted exercise and discomfort: A review. J. Strength Cond. Res. 2022, 36, 871–879. [Google Scholar] [CrossRef] [PubMed]

| Experimental Group (n = 12) | Control Group (n = 12) | χ2/t(p) | |
|---|---|---|---|
| Sex (male/female) | 9/3 | 8/4 | 0.202 c (0.653) |
| Measurement area (R/L) | 12/0 | 11/1 | 1.403 (0.307) |
| Age (year) | 29.16 a ± 6.11 | 28.41 ± 6.51 | −0.705 b (0.481) |
| Height [25] | 170.33 ± 9.06 | 171.50 ± 8.66 | −0.231 (0.817) |
| Weight (kg) | 72.41 ± 20.40 | 59.91 ± 15.89 | −0.029 (0.977) |
| BMI | 24.07 ± 3.19 | 23.36 ± 1.82 | −0.05 (0.506) |
| Experimental Group (n = 12) | Control Group (n = 12) | t/(p) b | |
|---|---|---|---|
| Muscular endurance (time) | 50.16 ± 15.83 a | 50.50 ± 10.36 | −0.202 (0.840) b |
| Maximum strength (N) | 47.50 ± 11.80 | 52.58 ± 15.10 | −0.954 (0.340) |
| Shoulder external rotation range of motion (°) | 81.00 ± 4.36 | 79.58 ± 3.94 | −0.698 (0.485) |
| Posterior deltoid (% MVIC) | 2.99 ± 1.64 | 3.46 ± 2.45 | −0.058 (0.954) |
| Supraspinatus (% MVIC) | 4.32 ± 1.18 | 5.60 ± 4.08 | −0.346 (0.729) |
| Infraspinatus (% MVIC) | 38.37 ± 10.24 | 45.83 ± 10.96 | −1.443 (0.149) |
| Teres minor (% MVIC) | 31.32 ± 14.76 | 36.50 ± 11.12 | −1.328 (0.184) |
| Experimental Group (n = 12) | Control Group (n = 12) | t(p) b | Effect Sizes | ||
|---|---|---|---|---|---|
| Muscular endurance (time) | Pre | 50.16 ± 15.83 a | 50.50 ± 10.36 | ||
| Post | 71.91 ± 2.86 | 68.25 ± 2.61 | |||
| Pre-Post | 21.50 ± 10.56 | 17.66 ± 8.82 | 1.007 (0.325) b | 0.39 | |
| t(p) | −7.130 (0.000) * | −5.219 (0.000) * | |||
| Maximum strength (N) | Pre | 47.50 ± 11.80 | 52.58 ± 15.10 | ||
| Post | 58.08 ± 10.29 | 58.33 ± 14.06 | |||
| Pre-Post | 10.58 ± 5.88 | 5.75 ± 3.81 | 2.387 (0.026) * | 0.97 | |
| t(p) | −6.230 (0.000) * | −5.219 (0.000) * | |||
| Shoulder external rotation Range of motion (º) | Pre | 81.00 ± 4.36 | 79.58 ± 3.94 | ||
| Post | 85.83 ± 2.65 | 84.00 ± 4.13 | |||
| Pre-Post | 4.83 ± 3.71 | 4.41 ± 3.65 | 0.277 (0.784) | 0.11 | |
| t(p) | −4.509 (0.001) * | −4.186 (0.002) * | |||
| Posterior deltoid (% MVIC) | Pre | 2.99 ± 5.54 | 3.46 ± 2.45 | ||
| Post | 5.54 ± 3.96 | 3.90 ± 2.25 | |||
| Pre-Post | 2.55 ± 4.11 | 0.69 ± 2.70 | 1.303 (0.208) | 0.53 | |
| t(p) | −2.159 (0.054) | −1.820 (0.096) | |||
| Supra spinatus (% MVIC) | Pre | 4.32 ± 1.81 | 5.60 ± 4.08 | ||
| Post | 5.40 ± 2.63 | 4.70 ± 1.40 | |||
| Pre-Post | 0.76 ± 2.09 | −0.38 ± 5.33 | 0.692 (0.496) | 0.28 | |
| t(p) | −1.335 (0.209) | 0.643 (0.533) | |||
| Infra spinatus (% MVIC) | Pre | 38.37 ± 10.24 | 45.83 ± 10.96 | ||
| Post | 64.93 ± 11.07 | 60.07 ± 12.72 | |||
| Pre-Post | 25.56 ± 12.61 | 14.15 ± 11.54 | 2.514 (0.020) * | 0.94 | |
| t(p) | −7.294 (0.000) * | −4.246 (0.001) * | |||
| Teres minor (% MVIC) | Pre | 31.32 ± 14.76 | 36.50 ± 11.12 | ||
| Post | 58.42 ± 16.20 | 51.61 ± 13.19 | |||
| Pre-Post | 27.10 ± 12.61 | 14.74 ± 11.63 | 2.703 (0.013) * | 1.02 | |
| t(p) | −8.726 (0.000) * | −4.316 (0.001) * | |||
| Category | Score | t(p) b | ||
|---|---|---|---|---|
| VAS | Experimental group (n = 12) | Control group (n = 12) | ||
| 1 | How much did you feel overall discomfort when you exercise? | 44.58 ± 15.58 a | 10.42 ± 0.78 | 6.786 (0.000 *) |
| 2 | How hard was it for you after 3 sets? | 64.17 ± 11.64 | 54.16 ± 10.83 | 2.178 (0.040 *) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Jung, K.; Lee, Y. Proximal Effects of Blood Flow Restriction on Shoulder Muscle Function and Discomfort During Low-Intensity Exercise. Sports 2025, 13, 354. https://doi.org/10.3390/sports13100354
Lee J, Jung K, Lee Y. Proximal Effects of Blood Flow Restriction on Shoulder Muscle Function and Discomfort During Low-Intensity Exercise. Sports. 2025; 13(10):354. https://doi.org/10.3390/sports13100354
Chicago/Turabian StyleLee, Junyeop, Kibum Jung, and Yongwoo Lee. 2025. "Proximal Effects of Blood Flow Restriction on Shoulder Muscle Function and Discomfort During Low-Intensity Exercise" Sports 13, no. 10: 354. https://doi.org/10.3390/sports13100354
APA StyleLee, J., Jung, K., & Lee, Y. (2025). Proximal Effects of Blood Flow Restriction on Shoulder Muscle Function and Discomfort During Low-Intensity Exercise. Sports, 13(10), 354. https://doi.org/10.3390/sports13100354

