Post-Exercise Recovery Modalities in Male and Female Soccer Players of All Ages and Competitive Levels: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Search Results
3.2. Study Characteristics and Quality Assessment
3.3. Recovery Strategies
3.4. Hydrotherapy
3.5. Active Recovery and Cool-Down
3.6. Blood Flow Restriction and Compression Therapy
3.7. Muscle Relaxation and Flexibility
3.8. Whole-Body Cryotherapy Chamber and Cooling Garments
3.9. Mindfulness, Sleep, and Daytime Nap
3.10. Nutrition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Bishop, P.; Jones, E.; Woods, K. Recovery from Training: A Brief Review. J. Strength. Cond. Res. 2008, 10, 1015–1024. [Google Scholar] [CrossRef]
- Poppendieck, W.; Wegmann, M.; Ferrauti, A.; Kellmann, M.; Pfeiffer, M.; Meyer, T. Massage and Performance Recovery: A Meta-Analytical Review. Sports Med. 2016, 46, 183–204. [Google Scholar] [CrossRef]
- Driller, M.; Leabeater, A. Fundamentals or Icing on Top of the Cake? A Narrative Review of Recovery Strategies and Devices for Athletes. Sports 2023, 11, 213. [Google Scholar] [CrossRef]
- Kellmann, M.; Bertollo, M.; Bosquet, L.; Brink, M.; Coutts, A.J.; Duffield, R.; Erlacher, D.; Halson, S.L.; Hecksteden, A.; Heidari, J.; et al. Recovery and Performance in Sport: Consensus Statement. Int. J. Sports Physiol. Perform. 2018, 13, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Barnett, A. Using Recovery Modalities between Training Sessions in Elite Athletes Does it Help? Sports Med. 2006, 36, 16. [Google Scholar] [CrossRef] [PubMed]
- Oliva-Lozano, J.M.; Barbier, X.; Fortes, V.; Muyor, J.M. Key load indicators and load variability in professional soccer players: A full season study. Res. Sports Med. 2023, 31, 13. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. Metabolic response and fatigue in soccer. Int. J. Sports Physiol. Perform. 2007, 2, 111–127. [Google Scholar] [CrossRef]
- Bangsbo, J.; Mohr, M.; Krustrup, P. Physical and metabolic demands of training and match-play in the elite football player. J. Sports Sci. 2006, 24, 665–674. [Google Scholar] [CrossRef]
- Marqués-Jiménez, D.; Calleja-González, J.; Arratibel-Imaz, I.; Terrados, N. Biochemical and Physical Performance Responses to a Soccer Match after a 72-Hour Recovery Period. Sports 2022, 10, 140. [Google Scholar] [CrossRef]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Fatigue in soccer: A brief review. J. Sports Sci. 2005, 23, 593–599. [Google Scholar] [CrossRef]
- Pérez-Castillo, Í.M.; Rueda, R.; Bouzamondo, H.; López-Chicharro, J.; Mihic, N. Biomarkers of post-match recovery in semi-professional and professional football (soccer). Front. Physiol. 2023, 14, 1167449. [Google Scholar] [CrossRef]
- Silva, J.R.; Rumpf, M.C.; Hertzog, M.; Castagna, C.; Farooq, A.; Girard, O.; Hader, K. Acute and Residual Soccer Match-Related Fatigue: A Systematic Review and Meta-analysis. Sports Med. 2018, 48, 539–583. [Google Scholar] [CrossRef] [PubMed]
- Nedelec, M.; McCall, A.; Carling, C.; Legall, F.; Berthoin, S.; Dupont, G. The influence of soccer playing actions on the recovery kinetics after a soccer match. J. Strength. Cond. Res. 2014, 28, 1517–1523. [Google Scholar] [CrossRef] [PubMed]
- Rampinini, E.; Bosio, A.; Ferraresi, I.; Petruolo, A.; Morelli, A.; Sassi, A. Match-related fatigue in soccer players. Med. Sci. Sports Exerc. 2011, 43, 2161–2170. [Google Scholar] [CrossRef]
- Andersson, H.; Raastad, T.; Nilsson, J.; Paulsen, G.; Garthe, I.; Kadi, F. Neuromuscular fatigue and recovery in elite female soccer: Effects of active recovery. Med. Sci. Sports Exerc. 2008, 40, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Ispirlidis, I.; Fatouros, I.G.; Jamurtas, A.Z.; Nikolaidis, M.G.; Michailidis, I.; Douroudos, I.; Margonis, K.; Chatzinikolaou, A.; Kalistratos, E.; Katrabasas, I.; et al. Time-course of changes in inflammatory and performance responses following a soccer game. Clin. J. Sport. Med. 2008, 18, 423–431. [Google Scholar] [CrossRef]
- Thorpe, R.T.; Atkinson, G.; Drust, B.; Gregson, W. Monitoring Fatigue Status in Elite Team-Sport Athletes: Implications for Practice. Int. J. Sports Physiol. Perform. 2017, 12, S227–S234. [Google Scholar] [CrossRef]
- Crowther, F.; Sealey, R.; Crowe, M.; Edwards, A.; Halson, S. Team sport athletes’ perceptions and use of recovery strategies: A mixed-methods survey study. BMC Sports Sci. Med. Rehabil. 2017, 9, 6. [Google Scholar] [CrossRef]
- Nédélec, M.; McCall, A.; Carling, C.; Legall, F.; Berthoin, S.; Dupont, G. Recovery in Soccer. Sports Med. 2012, 42, 997–1015. [Google Scholar] [CrossRef]
- Altarriba-Bartes, A.; Peña, J.; Vicens-Bordas, J.; Milà-Villaroel, R.; Calleja-González, J. Post-competition recovery strategies in elite male soccer players. Effects on performance: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0240135. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions Version 6.3; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Cashin, A.; McAuley, J. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J. Physiother. 2020, 66, 59. [Google Scholar] [CrossRef]
- Abbott, W.; Brashill, C.; Brett, A.; Clifford, T. Tart Cherry Juice: No Effect on Muscle Function Loss or Muscle Soreness in Professional Soccer Players After a Match. Int. J. Sports Physiol. Perform. 2020, 15, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.; Brett, A.; Cockburn, E.; Clifford, T. Presleep Casein Protein Ingestion: Acceleration of Functional Recovery in Professional Soccer Players. Int. J. Sports Physiol. Perform. 2019, 14, 6. [Google Scholar] [CrossRef]
- Abbott, W.; Hansell, E.J.; Brett, A.; Skarabot, J.; James, L.J.; Clifford, T. Curcumin Attenuates Delayed-Onset Muscle Soreness and Muscle Function Deficits Following a Soccer Match in Male Professional Soccer Players. Int. J. Sports Physiol. Perform. 2023, 18, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.; Carling, C.; Rhodes, D. Utilisation of performance markers to establish the effectiveness of cold-water immersion as a recovery modality in elite football. Biol. Sport. 2022, 39, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.; Keegan, J.; Reedy, A.; Rhodes, D. Effects of contemporary cryo-compression on post-training performance in elite academy footballers. Biol. Sport. 2022, 39, 11–17. [Google Scholar] [CrossRef]
- Andrade-Souza, V.A.; Bertuzzi, R.; de Araujo, G.G.; Bishop, D.; Lima-Silva, A.E. Effects of isolated or combined carbohydrate and caffeine supplementation between 2 daily training sessions on soccer performance. Appl. Physiol. Nutr. Metab. 2015, 40, 457–463. [Google Scholar] [CrossRef]
- Andersson, H.; Karlsen, A.; Blomhoff, R.; Raastad, T.; Kadi, F. Plasma antioxidant responses and oxidative stress following a soccer game in elite female players. Scand. J. Med. Sci. Sports 2010, 20, 600–608. [Google Scholar] [CrossRef]
- Ascensão, A.; Leite, M.; Rebelo, A.N.; Magalhäes, S.; Magalhäes, J. Effects of cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J. Sports Sci. 2011, 29, 217–225. [Google Scholar] [CrossRef]
- Bouchiba, M.; Bragazzi, N.L.; Zarzissi, S.; Turki, M.; Zghal, F.; Grati, M.A.; Daab, W.; Ayadi, F.; Rebai, H.; Ibn Hadj Amor, H.; et al. Cold Water Immersion Improves the Recovery of Both Central and Peripheral Fatigue Following Simulated Soccer Match-Play. Front. Physiol. 2022, 13, 860709. [Google Scholar] [CrossRef]
- Bouzid, M.A.; Ghattassi, K.; Daab, W.; Zarzissi, S.; Bouchiba, M.; Masmoudi, L.; Chtourou, H. Faster physical performance recovery with cold water immersion is not related to lower muscle damage level in professional soccer players. J. Therm. Biol. 2018, 78, 184–191. [Google Scholar] [CrossRef]
- Castilla-López, C.; Romero-Franco, N. Blood Flow Restriction Is Not Useful as Soccer Competition Recovery in Youth Male National-Level Soccer Players: A Crossover Randomised Controlled Trial. Sports 2023, 11, 99. [Google Scholar] [CrossRef] [PubMed]
- Clifford, T.; Abbott, W.; Kwiecien, S.Y.; Howatson, G.; McHugh, M.P. Cryotherapy Reinvented: Application of Phase Change Material for Recovery in Elite Soccer. Int. J. Sports Physiol. Perform. 2018, 13, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Coelho, T.M.; Nunes, R.F.H.; Nakamura, F.Y.; Duffield, R.; Serpa, M.C.; da Silva, J.F.; Carminatt, L.J.; Cidral-Filho, F.J.; Goldim, M.P.; Mathias, K.; et al. Post-Match Recovery in Soccer with Far-Infrared Emitting Ceramic Material or Cold-Water Immersion. J. Sports Sci. Med. 2021, 20, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Daab, W.; Bouzid, M.A.; Lajri, M.; Bouchiba, M.; Rebai, H. Brief cycles of lower-limb occlusion accelerate recovery kinetics in soccer players. Phys. Sportsmed. 2021, 49, 143–150. [Google Scholar] [CrossRef]
- Daab, W.; Bouzid, M.A.; Lajri, M.; Bouchiba, M.; Saafi, M.A.; Rebai, H. Chronic Beetroot Juice Supplementation Accelerates Recovery Kinetics following Simulated Match Play in Soccer Players. J. Am. Coll. Nutr. 2021, 40, 61–69. [Google Scholar] [CrossRef]
- Douzi, W.; Dupuy, O.; Theurot, D.; Boucard, G.; Dugué, B. Partial-body cryostimulation after training improves sleep quality in professional soccer players. BMC Res. Notes 2019, 12, 141. [Google Scholar] [CrossRef]
- Fullagar, H.H.K.; Skorski, S.; Duffield, R.; Meyer, T. The effect of an acute sleep hygiene strategy following a late-night soccer match on 1 recovery of players. Chronobiol. Int. 2016, 33, 15. [Google Scholar] [CrossRef]
- Gunnarsson, T.P.; Bendiksen, M.; Bischoff, R.; Christensen, P.M.; Lesivig, B.; Madsen, K.; Stephens, F.; Greenhaff, P.; Krustrup, P.; Bangsbo, J. Effect of whey protein- and carbohydrate-enriched diet on glycogen resynthesis during the first 48 h after a soccer game. Scand. J. Med. Sci. Sports 2013, 23, 508–515. [Google Scholar] [CrossRef]
- Hsouna, H.; Boukhris, O.; Hill, D.W.; Abdessalem, R.; Trabelsi, K.; Ammar, A.; Irandoust, K.; Souissi, N.; Taheri, M.; Hammouda, O.; et al. A daytime 40-min nap opportunity after a simulated late evening soccer match reduces the perception of fatigue and improves 5-m shuttle run performance. Res. Sports Med. 2022, 30, 502–515. [Google Scholar] [CrossRef]
- Kim, H.-W.; Joo, C.-H. Effects of cold water immersion and protein intake combined recovery after eccentric exercise on exercise performance in elite soccer players. J. Exerc. Rehabil. 2023, 19, 126–133. [Google Scholar] [CrossRef]
- Kinugasa, T.; Kilding, A.E. A Comparison of Post-Match Recovery Strategies in Youth Soccer Players. J. Strength. Cond. Res. 2009, 23, 1402. [Google Scholar] [CrossRef]
- Kositsky, A.; Avela, J. The Effects of Cold Water Immersion on the Recovery of Drop Jump Performance and Mechanics: A Pilot Study in Under-20 Soccer Players. Front. Sports Act. Living 2020, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Kritikos, S.; Papanikolaou, K.; Draganidis, D.; Poulios, A.; Georgakouli, K.; Tsimeas, P.; Tzatzakis, T.; Batsilas, D.; Batrakoulis, A.; Deli, C.K.; et al. Effect of whey vs. soy protein supplementation on recovery kinetics following speed endurance training in competitive male soccer players: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2021, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-H.; Yoon, J.-H.; Song, K.-J.; Oh, J.-K. Effects of Cool-Down Exercise and Cold-Water Immersion Therapy on Basic Fitness and Sport-Specific Skills among Korean College Soccer Players. Iran. J. Public Health 2021, 50, 2211–2218. [Google Scholar] [CrossRef]
- Marques-Jimenez, D.; Calleja-Gonzalez, J.; Arratibel, I.; Delextrat, A.; Uriarte, F.; Terrados, N. Physiological and physical responses to wearing compression garments during soccer matches and recovery. J. Sports Med. Phys. Fitness 2018, 58, 1642–1651. [Google Scholar] [CrossRef]
- Marqués-Jiménez, D.; Calleja-González, J.; Arratibel-Imaz, I.; Delextrat, A.; Uriarte, F.; Terrados, N. Influence of different types of compression garments on exercise-induced muscle damage markers after a soccer match. Res. Sports Med. 2018, 26, 27–42. [Google Scholar] [CrossRef]
- Nasser, N.; Zorgati, H.; Chtourou, H.; Guimard, A. Cold water immersion after a soccer match: Does the placebo effect occur? Front. Physiol. 2023, 14, 1062398. [Google Scholar] [CrossRef]
- Pesenti, F.B.; Silva, R.A.d.; Monteiro, D.C.; Silva, L.A.d.; Macedo, C.d.S.G. The Effect of Cold Water Immersion on Pain, Muscle Recruitment and Postural Control in Athletes. Rev. Bras. Med. Esporte 2020, 26, 323–327. [Google Scholar] [CrossRef]
- Pooley, S.; Spendiff, O.; Allen, M.; Moir, H.J. Static stretching does not enhance recovery in elite youth soccer players. BMJ Open Sport. Exerc. Med. 2017, 3, e000202. [Google Scholar] [CrossRef] [PubMed]
- Pooley, S.; Spendiff, O.; Allen, M.; Moir, H.J. Comparative efficacy of active recovery and cold water immersion as post-match recovery interventions in elite youth soccer. J. Sports Sci. 2020, 38, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Rey, E.; Lago-Peñas, C.; Casáis, L.; Lago-Ballesteros, J. The Effect of Immediate Post-Training Active and Passive Recovery Interventions on Anaerobic Performance and Lower Limb Flexibility in Professional Soccer Players. J. Hum. Kinet. 2012, 31, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Rey, E.; Lago-Peñas, C.; Lago-Ballesteros, J.; Casáis, L. The Effect of Recovery Strategies on Contractile Properties Using Tensiomyography and Perceived Muscle Soreness in Professional Soccer Players. J. Strength. Cond. Res. 2012, 6, 7. [Google Scholar] [CrossRef]
- Rey, E.; Padrón-Cabo, A.; Costa, P.B.; Barcala-Furelos, R. Effects of Foam Rolling as a Recovery Tool in Professional Soccer Players. J. Strength. Cond. Res. 2019, 33, 2194–2201. [Google Scholar] [CrossRef]
- Rodríguez-Marroyo, J.A.; González, B.; Foster, C.; Carballo-Leyenda, A.B.; Villa, J.G. Effect of the Cooldown Type on Session Rating of Perceived Exertion. Int. J. Sports Physiol. Perform. 2021, 16, 573–577. [Google Scholar] [CrossRef]
- Rowsell, G.J.; Coutts, A.J.; Reaburn, P.; Hill-Haas, S. Effects of cold-water immersion on physical performance between successive matches in high-performance junior male soccer players. J. Sports Sci. 2009, 27, 565–573. [Google Scholar] [CrossRef]
- Rowsell, G.J.; Coutts, A.J.; Reaburn, P.; Hill-Haas, S. Effect of post-match cold-water immersion on subsequent match running performance in junior soccer players during tournament play. J. Sports Sci. 2011, 29, 1–6. [Google Scholar] [CrossRef]
- Rupp, K.A.; Selkow, N.M.; Parente, W.R.; Ingersoll, C.D.; Weltman, A.L.; Saliba, S.A. The effect of cold water immersion on 48-hour performance testing in collegiate soccer players. J. Strength. Cond. Res. 2012, 26, 2043–2050. [Google Scholar] [CrossRef]
- Russell, M.; Birch, J.; Love, T.; Cook, C.J.; Bracken, R.M.; Taylor, T.; Swift, E.; Cockburn, E.; Finn, C.; Cunningham, D.; et al. The Effects of a Single Whole-Body Cryotherapy Exposure on Physiological, Performance, and Perceptual Responses of Professional Academy Soccer Players After Repeated Sprint Exercise. J. Strength. Cond. Res. 2017, 31, 415–421. [Google Scholar] [CrossRef]
- Vitale, J.A.; La Torre, A.; Banfi, G.; Bonato, M. Acute sleep hygiene strategy improves objective sleep latency following a late-evening soccer-specific training session: A randomized controlled trial. J. Sports Sci. 2019, 37, 2711–2719. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Sun, F.; Li, C.; Huang, J.; Hu, M.; Wang, K.; He, S.; Wu, J. Acute effects of mindfulness-based intervention on athlete cognitive function: An fNIRS investigation. J. Exerc. Sci. Fit. 2022, 20, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Choo, H.C.; Lee, M.; Yeo, V.; Poon, W.; Ihsan, M. The effect of cold water immersion on the recovery of physical performance revisited: A systematic review with meta-analysis. J. Sport. Sci. 2023, 40, 30. [Google Scholar] [CrossRef] [PubMed]
- Leeder, J.; Gissane, C.; van Someren, K.; Gregson, W.; Howatson, G. Cold water immersion and recovery from strenuous exercise: A meta-analysis. Br. J. Sports Med. 2012, 46, 233–240. [Google Scholar] [CrossRef]
- Versey, N.G.; Halson, S.L.; Dawson, B.T. Water immersion recovery for athletes: Effect on exercise performance and practical recommendations. Sports Med. 2013, 43, 1101–1130. [Google Scholar] [CrossRef]
- Higgins, T.R.; Greene, D.A.; Baker, M.K. Effects of Cold Water Immersion and Contrast Water Therapy for Recovery From Team Sport: A Systematic Review and Meta-analysis. J. Strength. Cond. Res. 2017, 31, 1443–1460. [Google Scholar] [CrossRef]
- Dupuy, O.; Douzi, W.; Theurot, D.; Bosquet, L.; Dugué, B. An Evidence-Based Approach for Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness, Fatigue, and Inflammation: A Systematic Review With Meta-Analysis. Front. Physiol. 2018, 9, 403. [Google Scholar] [CrossRef]
- Hohenauer, E.; Taeymans, J.; Baeyens, J.P.; Clarys, P.; Clijsen, R. The Effect of Post-Exercise Cryotherapy on Recovery Characteristics: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0139028. [Google Scholar] [CrossRef]
- Machado, A.F.; Ferreira, P.H.; Micheletti, J.K.; de Almeida, A.C.; Lemes, I.R.; Vanderlei, F.M.; Netto Junior, J.; Pastre, C.M. Can Water Temperature and Immersion Time Influence the Effect of Cold Water Immersion on Muscle Soreness? A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 503–514. [Google Scholar] [CrossRef]
- Calleja-Gonzalez, J.; Terrados, N.; Mielgo-Ayuso, J.; Delextrat, A.; Jukic, I.; Vaquera, A.; Torres, L.; Schelling, X.; Stojanovic, M.; Ostojic, S.M. Evidence-based post-exercise recovery strategies in basketball. Phys. Sportsmed. 2016, 44, 74–78. [Google Scholar] [CrossRef]
- Ihsan, M.; Watson, G.; Abbiss, C.R. What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise? Sports Med. 2016, 46, 1095–1109. [Google Scholar] [CrossRef] [PubMed]
- Lastella, M.; Halson, S.L.; Vitale, J.A.; Memon, A.R.; Vincent, G.E. To Nap or Not to Nap? A Systematic Review Evaluating Napping Behavior in Athletes and the Impact on Various Measures of Athletic Performance. Nat. Sci. Sleep. 2021, 13, 841–862. [Google Scholar] [CrossRef] [PubMed]
- Craven, J.; McCartney, D.; Desbrow, B.; Sabapathy, S.; Bellinger, P.; Roberts, L.; Irwin, C. Effects of Acute Sleep Loss on Physical Performance: A Systematic and Meta-Analytical Review. Sports Med. 2022, 52, 2669–2690. [Google Scholar] [CrossRef] [PubMed]
- Bonnar, D.; Bartel, K.; Kakoschke, N.; Lang, C. Sleep Interventions Designed to Improve Athletic Performance and Recovery: A Systematic Review of Current Approaches. Sports Med. 2018, 48, 683–703. [Google Scholar] [CrossRef]
- Clifford, T.; Allerton, D.M.; Brown, M.A.; Harper, L.; Horsburgh, S.; Keane, K.M.; Stevenson, E.J.; Howatson, G. Minimal muscle damage after a marathon and no influence of beetroot juice on inflammation and recovery. Appl. Physiol. 2016, 42, 263–270. [Google Scholar] [CrossRef]
- Clifford, T.; Bell, O.; West, D.J.; Howatson, G.; Stevenson, E.J. The effects of beetroot juice supplementation on indices of muscle damage following eccentric exercise. Eur. J. Appl. Physiol. 2016, 116, 353–362. [Google Scholar] [CrossRef]
- Clifford, T.; Berntzen, B.; Davison, G.W.; West, D.J.; Howatson, G.; Stevenson, E.J. Effects of Beetroot Juice on Recovery of Muscle Function and Performance between Bouts of Repeated Sprint Exercise. Nutrients 2016, 8, 506. [Google Scholar] [CrossRef]
- Menezes, E.F.; Peixoto, L.G.; Teixeira, R.R.; Justino, A.B.; Puga, G.M.; Espindola, F.S. Potential Benefits of Nitrate Supplementation on Antioxidant Defense System and Blood Pressure Responses after Exercise Performance. Oxid. Med. Cell Longev. 2019, 2019, 7218936. [Google Scholar] [CrossRef]
- Clifford, T.; Bowman, A.; Capper, T.; Allerton, D.M.; Foster, E.; Birch-Machin, M.; Lietz, G.; Howatson, G.; Stevenson, E.J. A pilot study investigating reactive oxygen species production in capillary blood after a marathon and the influence of an antioxidant-rich beetroot juice. Appl. Physiol. Nutr. Metab. 2018, 43, 303–306. [Google Scholar] [CrossRef]
- Carriker, C.R.; Rombach, P.; Stevens, B.M.; Vaughan, R.A.; Gibson, A.L. Acute dietary nitrate supplementation does not attenuate oxidative stress or the hemodynamic response during submaximal exercise in hypobaric hypoxia. Appl. Physiol. Nutr. Metab. 2018, 43, 1268–1274. [Google Scholar] [CrossRef]
- Jones, L.; Bailey, S.J.; Rowland, S.N.; Alsharif, N.; Shannon, O.M.; Clifford, T. The Effect of Nitrate-Rich Beetroot Juice on Markers of Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis of Human Intervention Trials. J. Diet. Suppl. 2022, 19, 749–771. [Google Scholar] [CrossRef]
- Fernandez-Lazaro, D.; Mielgo-Ayuso, J.; Seco Calvo, J.; Cordova Martinez, A.; Caballero Garcia, A.; Fernandez-Lazaro, C.I. Modulation of Exercise-Induced Muscle Damage, Inflammation, and Oxidative Markers by Curcumin Supplementation in a Physically Active Population: A Systematic Review. Nutrients 2020, 12, 501. [Google Scholar] [CrossRef]
- Oxley, R.A.; Peart, D.J. The effect of curcumin supplementation on functional strength outcomes and markers of exercise-induced muscle damage: A systematic review and meta-analysis. Nutr. Health 2024, 30, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Kanda, A.; Nakayama, K.; Sanbongi, C.; Nagata, M.; Ikegami, S.; Itoh, H. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise. Nutrients 2016, 8, 339. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Pre-sleep casein protein ingestion: New paradigm in post-exercise recovery nutrition. Phys. Act. Nutr. 2020, 24, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Oliva-Lozano, J.M.; Patterson, S.D.; Chiampas, G.; Maybury, E.; Cost, R. Blood flow restriction as a post-exercise recovery strategy: A systematic review of the current status of the literature. Biol. Sport 2024, 41, 191–200. [Google Scholar] [CrossRef]
- Ortiz, R.; Sinclair Elder, A.; Elder, C.; Dawes, J.J. A systematic review on the effectiveness of active recovery interventions on athletic performance of professional-, collegiate-, and competitive-level adult athletes. J. Strength. Cond. Res. 2019, 33, 12. [Google Scholar] [CrossRef]
- Field, A.; Harper, L.D.; Chrismas, B.C.R.; Fowler, P.M.; McCall, A.; Paul, D.J.; Chamari, K.; Taylor, L. The Use of Recovery Strategies in Professional Soccer: A Worldwide Survey. Int. J. Sports Physiol. Perform. 2021, 16, 1804–1815. [Google Scholar] [CrossRef]
- Querido, S.M.; Brito, J.; Figueiredo, P.; Carnide, F.; Vaz, J.R.; Freitas, S.R. Postmatch Recovery Practices Carried Out in Professional Football: A Survey of 56 Portuguese Professional Football Teams. Int. J. Sports Physiol. Perform. 2022, 17, 6. [Google Scholar] [CrossRef]
- de Paiva, P.R.; Tomazoni, S.S.; Johnson, D.S.; Vanin, A.A.; Albuquerque-Pontes, G.M.; Machado, C.D.; Casalechi, H.L.; de Carvalho, P.T.; Leal-Junior, E.C. Photobiomodulation therapy (PBMT) and/or cryotherapy in skeletal muscle restitution, what is better? A randomized, double-blinded, placebo-controlled clinical trial. Lasers Med. Sci. 2016, 31, 1925–1933. [Google Scholar] [CrossRef]
- Anderson, N.; Robinson, D.G.; Verhagen, E.; Fagher, K.; Edouard, P.; Rojas-Valverde, D.; Ahmed, O.H.; Jederström, M.; Usacka, L.; Benoit-Piau, J.; et al. Under-representation of women is alive and well in sport and exercise medicine: What it looks like and what we can do about it. BMJ Open Sport. Exerc. Med. 2023, 9, e001606. [Google Scholar] [CrossRef]
- Hausswirth, C.; Meur, Y.L. Physiological and Nutritional Aspects of Post-Exercise Recovery. Sports Med. 2011, 41, 22. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Häkkinen, K.; Newton, R.U.; Nindl, B.C.; Volek, J.S.; McCormick, M.; Gotshalk, L.A.; Gordon, S.E.; Fleck, S.J.; Campbell, W.W.; et al. Effects of heavy-resistance training on hormonal response patterns in younger vs. older men. J. Appl. Physiol. 1999, 87, 10. [Google Scholar] [CrossRef]
- Meyer, T.; Wegmann, M.; Poppendieck, W.; Fullagar, H.H.K. Regenerative interventions in professional football. Sport-Orthopädie Sport Traumatol. Sports Orthop. Traumatol. 2014, 30, 112–118. [Google Scholar] [CrossRef]
- Wiewelhove, T.; Schneider, C.; Kellmann, M.; Pfeiffer, M.; Meyer, T.; Ferrauti, A. Recovery management in sport: Overview and outcomes of a nine-year multicenter research program. Int. J. Sports Sci. Coach. 2024, 19, 1223–1233. [Google Scholar] [CrossRef]
Item | Desired Outcome | Search Terms |
---|---|---|
1 | Sample of soccer players | soccer OR football NOT American football |
2 | Recovery modality use | Recovery strategies OR recovery modalities OR pneumatic compression OR electrical stimulation OR cold water immersion OR hot water immersion OR contrast bath OR floatation-restricted environmental stimulation therapy OR photobiomodulation OR blood flow restriction OR occlusion OR cryotherapy OR active recovery OR sleep OR meditation OR mindfulness OR imagery OR nutrition OR hydration OR compression garments OR massage OR sauna OR percussive OR stretching OR yoga OR progressive muscle relaxation OR acupuncture OR pool-based recovery OR external cold OR grounding OR Earthing OR hydrotherapy OR chamber OR whole-body vibration OR breathwork protein or carbohydrate or supplement or diet or hydration or nutrition or whey OR cherry juice |
3 | Physical/physiological recovery | physical recovery OR muscle recovery OR neuromuscular fatigue OR fitness OR strength OR fatigue OR glycogen OR inflammation OR inflammatory markers OR neuromuscular markers OR physiological markers OR biomarkers OR muscle damage OR soreness OR pain OR physical performance OR cardiovascular recovery OR range of motion OR biochemical markers OR speed OR heart rate OR tendon damage |
4 | Psychological/cognitive/mental recovery | mental fatigue OR cognitive fatigue OR reaction time OR response time OR decision-making OR perceived recovery OR wellness OR stress OR rating perceived exertion OR quality recovery OR sleep OR mood OR motivation OR energy |
5 | Technical performance recovery | passing OR juggling OR shooting OR finishing OR dribbling |
Reference | EC | RA | CA | BL | SB | BT | BA | MA | IT | BG | PM | Total Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Abbott et al., 2020 [25] | * | * | * | * | * | * | * | * | * | 9 | ||
Abbott et al., 2019 [26] | * | * | * | * | * | * | * | * | 8 | |||
Abbott et al., 2023 [27] | * | * | * | * | * | * | * | * | * | * | 10 | |
Alexander et al., 2022 [28] | * | * | * | * | * | * | 6 | |||||
Alexander, Keegan, Carling, and Rhodes, 2022 [29] | * | * | * | * | * | * | * | 7 | ||||
Andrade et al., 2015 [30] | * | * | * | * | * | * | 7 | |||||
Andersson et al., 2008 [15] | * | * | * | * | * | * | * | 7 | ||||
Andersson et al., 2010 [31] | * | * | * | * | * | * | 7 | |||||
Ascensao et al., 2011 [32] | * | * | * | * | * | * | 6 | |||||
Bouchiba et al., 2022 [33] | * | * | * | * | * | * | 6 | |||||
Bouzid et al., 2018 [34] | * | * | * | * | * | * | 6 | |||||
Castilla-Lopez & Romero-Franco, 2023 [35] | * | * | * | * | * | * | * | 7 | ||||
Clifford et al., 2018 [36] | * | * | * | * | * | * | * | * | 8 | |||
Coelho et al., 2020 [37] | * | * | * | * | * | * | * | 7 | ||||
Daab et al., 2021a [38] | * | * | * | * | * | * | * | * | 8 | |||
Daab et al., 2021b [39] | * | * | * | * | * | * | * | * | * | 9 | ||
Douzi et al., 2019 [40] | * | * | * | * | * | * | 6 | |||||
Fullagar et al., 2016 [41] | * | * | * | * | 4 | |||||||
Gunnarsson et al., 2013 [42] | * | * | * | 3 | ||||||||
Hsouna et al., 2022 [43] | * | * | * | * | * | * | * | 7 | ||||
Kim & Joo, 2023 [44] | * | * | * | * | * | * | * | 7 | ||||
Kinugasa & Kilding, 2009 [45] | * | * | * | * | * | * | * | 7 | ||||
Kositsky & Avela, 2020 [46] | * | * | * | * | * | * | 6 | |||||
Kritikos et al., 2021 [47] | * | * | * | * | * | * | * | * | 8 | |||
Lee et al., 2021 [48] | * | * | * | * | * | * | * | 7 | ||||
Marques-Jimenez et al., 2018a [49] | * | * | * | * | * | * | * | 7 | ||||
Marques-Jimenez et al., 2018b [50] | * | * | * | * | * | * | * | 7 | ||||
Nasser et al., 2023 [51] | * | * | * | * | * | * | * | * | 8 | |||
Pesenti et al., 2020 [52] | * | * | * | * | * | * | * | * | * | 9 | ||
Pooley et al., 2017 [53] | * | * | * | * | * | * | * | 7 | ||||
Pooley et al., 2020 [54] | * | * | * | * | * | * | * | 7 | ||||
Rey et al., 2012a [55] | * | * | * | * | * | * | 6 | |||||
Rey et al., 2012b [56] | * | * | * | * | * | * | 6 | |||||
Rey et al., 2019 [57] | * | * | * | * | * | * | * | 7 | ||||
Rodríguez-Marroyo et al., 2021 [58] | * | * | * | * | * | * | 6 | |||||
Roswell et al., 2009 [59] | * | * | * | * | * | * | 6 | |||||
Roswell et al., 2011 [60] | * | * | * | * | * | * | 6 | |||||
Rupp et al., 2012 [61] | * | * | * | * | * | * | * | * | * | 9 | ||
Russell et al., 2017 [62] | * | * | * | * | * | * | 6 | |||||
Vitale et al., 2019 [63] | * | * | * | * | * | * | 6 | |||||
Zhu et al., 2021 [64] | * | * | * | * | * | * | * | * | * | 9 |
Recovery Intervention | Protocol | |
---|---|---|
Study Count | Recovery Strategy | |
12 | Cold-Water Immersion | 10 to 15 °C (50 to 59 °F) cold-water immersion for 10–15 min applied within 1 h post-training/match and can be repeated on subsequent days |
1 | Contrast-Water Immersion | Alternate between 1 and 2 min of hot- (36 °C–40 °C or 96.8 °F–104 °F) and 1 min of cold-water (10–15 °C or 50 °F–59 °F) lower-body immersion in a pool 3 to 7 times for a total of 6–15 min applied within 1 h post-training/match and can be repeated on subsequent days |
6 | Active Recovery | 10–20 total minutes of low-intensity cycling or running combined with dynamic stretching 24 h after training or match |
2 | Blood Flow Restriction | 3 cycles of 5 min occlusion (50 mmHg above systolic blood pressure) separated by 5 min of reperfusion (0 mmHg) using a blood pressure cuff placed bilaterally on the proximal portion of the thigh while in a passive, supine position |
1 | Foam Rolling | 45 s of foam rolling quadriceps, hamstrings, adductors, glutes, and gastrocnemius, beginning at the distal portion of the muscle on both legs, applied within 1 h post-training/match, and can be repeated at subsequent timepoints post-training/match |
1 | Static Stretching | 30 s stretching quadriceps, hamstrings, adductors, glutes, and gastrocnemius within 30 min post-training/match |
2 | Whole-Body Cryotherapy | 120–180 s at −135 °C to −180 °C applied within 1 h post-training/match and can to be repeated at subsequent timepoints post-training/match |
1 | Mindfulness Intervention | 8 min mindfulness induction including mindful breathing (2 min mindful breathing, 4 min body scan, and then 2 min mindful breathing) |
3 | Daytime Nap | 40 min nap opportunity in the early afternoon |
1 | Pre-Sleep Casein Consumption | 40 g of casein within 30 min of going to sleep |
1 | Beet Root Juice | Consume 150 mL twice per day (08:00 AM and 6:00 PM) |
1 | Curcumin Supplementation | Consume 500 mg curcumin supplement within 1 h post-training/match |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vatne, E.; Oliva-Lozano, J.M.; Saenz, C.; Cost, R.; Hagen, J. Post-Exercise Recovery Modalities in Male and Female Soccer Players of All Ages and Competitive Levels: A Systematic Review. Sports 2025, 13, 343. https://doi.org/10.3390/sports13100343
Vatne E, Oliva-Lozano JM, Saenz C, Cost R, Hagen J. Post-Exercise Recovery Modalities in Male and Female Soccer Players of All Ages and Competitive Levels: A Systematic Review. Sports. 2025; 13(10):343. https://doi.org/10.3390/sports13100343
Chicago/Turabian StyleVatne, Emaly, Jose M. Oliva-Lozano, Catherine Saenz, Rick Cost, and Josh Hagen. 2025. "Post-Exercise Recovery Modalities in Male and Female Soccer Players of All Ages and Competitive Levels: A Systematic Review" Sports 13, no. 10: 343. https://doi.org/10.3390/sports13100343
APA StyleVatne, E., Oliva-Lozano, J. M., Saenz, C., Cost, R., & Hagen, J. (2025). Post-Exercise Recovery Modalities in Male and Female Soccer Players of All Ages and Competitive Levels: A Systematic Review. Sports, 13(10), 343. https://doi.org/10.3390/sports13100343