Influence and Relationship of Pain on Lumbar Biomechanics in a Young Adult Population with Non-Specific Low Back Pain
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wirth, B.; Schweinhardt, P. Personalized assessment and management of non-specific low back pain. Eur. J. Pain. 2024, 28, 181–198. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.B.; Maher, C.G.; Pinto, R.Z.; Traeger, A.C.; Lin, C.C.; Chenot, J.F.; van Tulder, M.; Koes, B.W. Clinical practice guidelines for the management of non-specific low back pain in primary care: An updated overview. Eur. Spine J. 2018, 27, 2791–2803. [Google Scholar] [CrossRef] [PubMed]
- Koes, B.W.; van Tulder, M.; Lin, C.-W.C.; Macedo, L.G.; McAuley, J.; Maher, C. An updated overview of clinical guidelines for the management of non-specific low back pain in primary care. Eur. Spine J. 2010, 19, 2075–2094. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health (NIH); National Institute of Neurological Disorders and Stroke. Low Back Pain Fact Sheet. 2020. Available online: https://www.ninds.nih.gov/sites/default/files/migrate-documents/low_back_pain_20-ns-5161_march_2020_508c.pdf (accessed on 26 April 2024).
- Hanney, W.J.; Masaracchio, M.; Liu, X.; Kolber, M.J. The influence of physical therapy guideline adherence on healthcare utilization and costs among patients with low back pain: A systematic review of the literature. PLoS ONE 2016, 11, e0156799. [Google Scholar] [CrossRef] [PubMed]
- Ortiz García, A.; Humbría Mendiola, A.; Carmona, L.; Peña Sagredo, J.L.; Ortiz, A. Impacto poblacional del dolor lumbar en España: Resultados del estudio EPISER. Rev. Esp. Reumatol. 2002, 29, 471. [Google Scholar]
- Luomajoki, H.; Pfeiffer, F.; Benz, T. Low Back Pain—Value of Prevention and Physiotherapy? Ther. Umsch. 2023, 80, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Corp, N.; Mansell, G.; Stynes, S.; Wynne-Jones, G.; Morsø, L.; Hill, J.C.; van der Windt, D.A. Evidence-based treatment recommendations for neck and low back pain across Europe: A systematic review of guidelines. Eur. J. Pain 2021, 25, 275–295. [Google Scholar] [CrossRef]
- Owen, P.J.; Miller, C.T.; Mundell, N.L.; Verswijveren, S.J.J.M.; Tagliaferri, S.D.; Brisby, H.; Bowe, S.J.; Belavy, D.L. Which specific modes of exercise training are most effective for treating low back pain? Network meta-analysis. Br. J. Sports Med. 2020, 54, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- García-Moreno, J.M.; Calvo-Muñoz, I.; Gómez-Conesa, A.; López-López, J.A. Effectiveness of physiotherapy interventions for back care and the prevention of non-specific low back pain in children and adolescents: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2022, 23, 314. [Google Scholar] [CrossRef]
- Arcanjo, F.L.; Martins, J.V.P.; Moté, P.; Leporace, G.; de Oliveira, D.A.; de Sousa, C.S.; Saquetto, M.B.; Gomes-Neto, M. Proprioceptive neuromuscular facilitation training reduces pain and disability in individuals with chronic low back pain: A systematic review and meta-analysis. Complement. Ther. Clin. Pract. 2022, 46, 101505. [Google Scholar] [CrossRef]
- Tong, M.H.; Mousavi, S.J.; Kiers, H.; Ferreira, P.; Refshauge, K.; van Dieën, J. Is there a relationship between lumbar proprioception and low back pain? A systematic review with meta-analysis. Arch. Phys. Med. Rehabil. 2017, 98, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Newcomer, K.L.; Laskowski, E.R.; Yu, B.; Larson, D.R.; An, K.N. Repositioning error in low back pain; comparing trunk repositioning error in subjects with chronic low back pain and control subjects. Spine 2000, 25, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Vleeming, A.; Schuenke, M.D.; Danneels, L.; Willard, F.H. The functional coupling of the deep abdominal and paraspinal muscles: The effects of simulated paraspinal muscle contraction on force transfer to the middle and posterior layer of the thoracolumbar fascia. J. Anat. 2014, 225, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Koumantakis, G.A.; Watson, P.J.; Oldham, J.A. Trunk muscle stabilization training plus general exercise versus general exercise only: Randomized controlled trial of patients with recurrent low back pain. Phys. Ther. 2005, 85, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.; Bloxham, S. A Systematic Review of the Effects of Exercise and Physical Activity on Non-Specific Chronic Low Back Pain. Healthcare 2016, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.S.; Mengshoel, A.M. Assessments of lumbar flexion range of motion: Intertester reliability and concurrent validity of 2 commonly used clinical tests. Spine 2014, 39, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Turci, A.M.; Nogueira, C.G.; Nogueira Carrer, H.C.; Chaves, T.C. Self-administered stretching exercises are as effective as motor control exercises for people with chronic non-specific low back pain: A randomised trial. J. Physiother. 2023, 69, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Buckup, K. Pruebas Clínicas Para Patología Ósea, Articular y Muscular; Exploraciones-Signos-Síntomas, 2nd ed.; Editorial Masson: Dortmund, Germany, 2002. [Google Scholar]
- Norkin, C.; White, C.J. Goniometría. Evaluación de la Movilidad Articular; Editorial Marban: Madrid, Spain, 2006; pp. 378–380. [Google Scholar]
- Quack, C.; Schenk, P.; Laeubli, T.; Spillmann, S.; Hodler, J.; Michel, B.A.; Klipstein, A. Do MRI findings correlate with mobility tests? An explorative analysis of the test validity with regard to structure. Eur. Spine J. 2007, 16, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Alaminos-Torres, A.; Martinez-Lorca, M.; Sifre De Sola, I.; López-Ejeda, N.; Dolores Marrodán, M. Psychological distress in Spanish airline pilots during the aviation crisis caused by the COVID-19 pandemic and psychometric analysis of the 12-item general health questionnaire. Ergonomics 2022, 65, 741–752. [Google Scholar] [CrossRef]
- Kovacs, F.M.; Muriel, A.; Medina, J.M.; Abraira, V.; Sánchez, M.D.; Jaúregui, J.O. Spanish Back Pain Research Network. Psychometric characteristics of the Spanish versión of the FAB questionnaire. Spine 2006, 31, 104–110. [Google Scholar] [CrossRef]
- Gusi, N.; del Pozo-Cruz, B.; Olivares, P.; Hernández-Mocholi, M.; Hill, J.C. The Spanish version of the “STarT Back Screening Tool” (SBST) in different subgroups. Aten. Prim. 2011, 43, 356–361. [Google Scholar]
- Carrera, Y. Cuestionario Internacional de actividad físicas (IPAQ). Rev. Enferm. Trab. 2017, 7, 49–54. [Google Scholar]
- Fujiwara, A.; Lim, T.-H.; An, H.S.; Tanaka, N.; Jeon, C.-H.; Andersson, G.B.J.; Haughton, V.M. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 2000, 25, 3036–3044. [Google Scholar] [CrossRef]
- Breen, A.; Nematimoez, M.; Branney, J.; Breen, A. Passive intervertebral restraint is different in patients with treatment-resistant chronic nonspecific low back pain: A retrospective cohort study and control comparison. Eur. Spine J. 2024, 33, 2405–2419. [Google Scholar] [CrossRef] [PubMed]
- Esposito, C.I.; Miller, T.T.; Kim, H.J.; Barlow, B.T.; Wright, T.M.; Padgett, D.E.; Jerabek, S.A.; Mayman, D.J. Does Degenerative Lumbar Spine Disease Influence Femoroacetabular Flexion in Patients Undergoing Total Hip Arthroplasty? Clin. Orthop. Relat. Res. 2016, 474, 1788–1797. [Google Scholar] [CrossRef]
- Perret, C.; Poiraudeau, S.; Fermanian, J.; Colau, M.M.; Benhamou, M.A.; Revel, M. Validity, reliability, and responsiveness of the fingertip-to-floor test. Arch. Phys. Med. Rehabil. 2001, 82, 1566–1570. [Google Scholar] [CrossRef]
- Antero, H.; Beatriz, M.; Beltran, B.; Careddu, S.; Michael, C. Musculoskeletal Science and Practice Review article Effectiveness of movement control exercise on patients with non-specific low back pain and movement control impairment: A systematic review and. Musculoskelet. Sci. Pract. 2018, 36, 1–11. [Google Scholar]
- Henry, S.M.; Dillen, L.R.; Trombley, A.R.; Dee, J.M.; Bunn, J.Y. Reliability of novice raters in using the movement system impairment approach to classify people with low back pain. Man. Ther. 2013, 18, 35–40. [Google Scholar] [CrossRef]
- Crosbie, J.; de Faria Negrão Filho, R.; Nascimento, D.P.; Ferreira, P. Coordination of Spinal Motion in the Transverse and Frontal planes during walking in people with and without recurrent low back pain. Spine 2013, 38, E286–E292. [Google Scholar] [CrossRef] [PubMed]
- Laird, R.A.; Gilbert, J.; Kent, P.; Keating, J.L. Comparing lumbo-pelvic kinematics in people with and without back pain: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2014, 15, 229. [Google Scholar] [CrossRef]
- Cornaz, F.; Widmer, J.; Farshad-Amacker, N.A.; Spirig, J.M.; Snedeker, J.G.; Farshad, M. Intervertebral disc degeneration relates to biomechanical changes of spinal ligaments. Spine J. 2021, 21, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.-J.; Noh, K.-H.; Kang, M.-H.; Oh, J.-S. Differences in performance on the functional movement screen between chronic low back pain patients and healthy control subjects. J. Phys. Ther. Sci. 2016, 28, 2094–2096. [Google Scholar] [CrossRef] [PubMed]
- Mellor, F.E.; Thomas, P.W.; Thompson, P.; Breen, A.C. Proportional lumbar spine inter-vertebral motion patterns: A comparison of patients with chronic, non-specific low back pain and healthy controls. Eur. Spine J. 2014, 23, 2059–2067. [Google Scholar] [CrossRef] [PubMed]
- Shojaei, I.; Salt, E.G.; Hooker, Q.; Van Dillen, L.R.; Bazrgari, B. Comparison of lumbo-pelvic kinematics during trunk forward bending and backward return between patients with acute low back pain and asymptomatic controls. Clin. Biomech. 2017, 41, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Colloca, C.J.; Hinrichs, R.N. The Biomechanical and Clinical Significance of the Lumbar Erector Spinae Flexion-Relaxation Phenomenon: A Review of Literature. J. Manip. Physiol. Ther. 2005, 28, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Hirata, R.P.; Salomoni, S.E.; Christensen, S.W.; Graven-Nielsen, T. Reorganised motor control strategies of trunk muscles due to acute low back pain. Hum. Mov. Sci. 2015, 41, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Zemková, E.; Cepková, A.; Muyor, J.M. The association of reactive balance control and spinal curvature under lumbar muscle fatigue. PeerJ 2021, 9, e11969. [Google Scholar] [CrossRef] [PubMed]
- Jandre Reis, F.J.; Macedo, A.R. Influence of Hamstring Tightness in Pelvic, Lumbar and Trunk Range of Motion in Low Back Pain and Asymptomatic Volunteers during Forward Bending. Asian Spine J. 2015, 9, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Arbanas, J.; Pavlovic, I.; Marijancic, V.; Vlahovic, H.; Starcevic-Klasan, G.; Peharec, S.; Bajek, S.; Miletic, D.; Malnar, D. MRI features of the psoas major muscle in patients with low back pain. Eur. Spine J. 2013, 22, 1965–1971. [Google Scholar] [CrossRef]
- Tateuchi, H.; Taniguchi, M.; Mori, N.; Ichihashi, N. Balance of hip and trunk muscle activity is associated with increased anterior pelvic tilt during prone hip extension. J. Electromyogr. Kinesiol. 2012, 22, 391–397. [Google Scholar] [CrossRef]
- Caneiro, J.P.; Smith, A.; Bunzli, S.; Linton, S.; Moseley, G.L.; O’Sullivan, P. From Fear to Safety: A Roadmap to Recovery from Musculoskeletal Pain. Phys. Ther. 2022, 102, 271. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.A.; Maher, C.G.; Franco, M.R.; Morelhão, P.K.; Oliveira, C.B.; Silva, F.G.; Pinto, R.Z. Fear of Movement Is Not Associated with Objective and Subjective Physical Activity Levels in Chronic Nonspecific Low Back Pain. Arch. Phys. Med. Rehabil. 2017, 98, 96–104. [Google Scholar] [CrossRef] [PubMed]
Pain, Mean (SD) | Average Differences | Student’s t Test | d | |||
---|---|---|---|---|---|---|
No | Yes | t (52) | p-Value | |||
Toe-ground clearance (cm) | 5.39 (8.89) | 4.22 (6.22) | 1.17 | 0.71 | 0.477 | 0.16 |
Schöber flexion (cm) | 14.84 (0.77) | 15.35 (0.93) | −0.51 | −2.57 | 0.012 | −0.58 |
Schöber extension (cm) | 7.58 (0.72) | 7.72 (0.90) | −0.14 | −0.73 | 0.469 | −0.16 |
Right side flexion (cm) | 48.55 (4.89) | 46.39 (4.08) | 2.16 | 2.19 | 0.031 | 0.49 |
Left side flexion (cm) | 49.44 (4.95) | 47.30 (4.20) | 2.14 | 2.12 | 0.037 | 0.48 |
Right rotation (degrees) | 44.36 (15.55) | 49.85 (14.60) | −5.49 | −1.64 | 0.106 | −0.37 |
Left rotation (degrees) | 44.71 (16.56) | 51.24 (14.10) | −6.53 | −1.93 | 0.056 | −0.43 |
Pain, Mean (SD) | Average Differences | Student’s t Test | d | |||
---|---|---|---|---|---|---|
No | Yes | t (52) | p-Value | |||
FAB_Total | 6.23 (8.22) | 16.82 (9.80) | −10.59 | −5.09 | <0.001 | −1.14 |
STarT_Back_Total | 0.61 (0.88) | 2.45 (1.55) | −1.84 | −6.08 | <0.001 | −1.37 |
GHQ_Total | 8.35 (3.79) | 9.25 (4.54) | −0.90 | −0.93 | 0.353 | −0.21 |
Flexion | Extension | |||||||
---|---|---|---|---|---|---|---|---|
B (SE) | Beta | t | p-Value | B (SE) | Beta | t | p-Value | |
PAIN (Yes vs. No) | 0.48 (0.23) | 0.26 | 2.08 | 0.041 | 0.27 (0.23) | 0.15 | 1.16 | 0.249 |
GHQ_Total | −0.05 (0.02) | −0.25 | −2.39 | 0.019 | 0.01 (0.02) | 0.04 | 0.31 | 0.755 |
FAB_Total | 0.03 (0.01) | 0.30 | 2.21 | 0.030 | 0.01 (0.01) | 0.14 | 0.97 | 0.336 |
STarT_Back_Total | −0.09 (0.08) | −0.16 | −1.10 | 0.276 | −0.17 (0.08) | −0.32 | −2.06 | 0.043 |
Right | Left | |||||||
---|---|---|---|---|---|---|---|---|
B (SE) | Beta | t | p-Value | B (SE) | Beta | t | p-Value | |
Pain (Yes vs. No) | −2.62 (1.22) | −0.28 | −2.14 | 0.035 | −2.22 (1.07) | −0.23 | −2.07 | 0.041 |
GHQ_Total | 0.01 (0.12) | 0.01 | 0.12 | 0.908 | 0.10 (0.12) | 0.10 | 0.85 | 0.399 |
FAB_Total | 0.03 (0.06) | 0.08 | 0.56 | 0.578 | 0.03 (0.06) | 0.07 | 0.48 | 0.634 |
STarT-Back_Total | −0.12 (0.43) | −0.04 | −0.27 | 0.787 | −0.26 (0.44) | −0.09 | −0.59 | 0.559 |
Right | Left | |||||||
---|---|---|---|---|---|---|---|---|
B (SE) | Beta | t | p-Value | B (SE) | Beta | t | p-Value | |
Pain (Yes vs. No) | 7.85 (3.87) | 0.25 | 2.03 | 0.046 | 5.97 (4.24) | 0.19 | 1.41 | 0.163 |
GHQ_Total | 0.23 (0.40) | 0.07 | 0.58 | 0.562 | 0.03 (0.41) | 0.01 | 0.07 | 0.945 |
FAB_Total | −0.29 (0.21) | −0.20 | −1.39 | 0.168 | −0.21 (0.21) | −0.14 | −0.97 | 0.334 |
STarT-Back_Total | −0.05 (1.46) | −0.01 | −0.03 | 0.975 | 1.27 (1.48) | 0.13 | 0.86 | 0.393 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-de la Cruz, S. Influence and Relationship of Pain on Lumbar Biomechanics in a Young Adult Population with Non-Specific Low Back Pain. Sports 2024, 12, 190. https://doi.org/10.3390/sports12070190
Pérez-de la Cruz S. Influence and Relationship of Pain on Lumbar Biomechanics in a Young Adult Population with Non-Specific Low Back Pain. Sports. 2024; 12(7):190. https://doi.org/10.3390/sports12070190
Chicago/Turabian StylePérez-de la Cruz, Sagrario. 2024. "Influence and Relationship of Pain on Lumbar Biomechanics in a Young Adult Population with Non-Specific Low Back Pain" Sports 12, no. 7: 190. https://doi.org/10.3390/sports12070190
APA StylePérez-de la Cruz, S. (2024). Influence and Relationship of Pain on Lumbar Biomechanics in a Young Adult Population with Non-Specific Low Back Pain. Sports, 12(7), 190. https://doi.org/10.3390/sports12070190