Effects of Therapies Involving Plyometric-Jump Training on Physical Fitness of Youth with Cerebral Palsy: A Systematic Review with Meta-Analysis
Highlights
- In this systematic review with a meta-analysis, we aimed to examine the effects of plyometric-jump training on the physical fitness of youth with cerebral palsy (CP) compared with control interventions (standard therapy, e.g., stretching).
- Based on eight studies, plyometric jump training resulted in significant improvements in muscle strength as well as static and dynamic balance among the boys and girls with CP aged 9 to 15 years.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Registration
2.2. Procedures
2.3. Inclusion and Exclusion Criteria
2.4. Literature Search: Administration and Update
2.5. Data Collection Process
2.6. Data Items
2.7. Methodological Quality Assessment
2.8. Summary Measures, Synthesis of Results, and Publication Bias
2.9. Certainty of Evidence
3. Results
3.1. Study Selection
3.2. Methodological Quality of the Included Studies
3.3. Study Characteristics
3.4. Results from the Meta-Analyses
3.4.1. Muscle Strength
3.4.2. Static Balance
3.4.3. Dynamic Balance
3.5. Additional Analyses
3.5.1. Certainty of Evidence
3.5.2. Adverse Effects
4. Discussion
Limitations and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oskoui, M.; Coutinho, F.; Dykeman, J.; Jetté, N.; Pringsheim, T. An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child. Neurol. 2013, 55, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child. Neurol. Suppl. 2007, 109, 8–14. [Google Scholar] [PubMed]
- Pudig, L.; Delobel-Ayoub, M.; Horridge, K.; Gergeli, A.T.; Sellier, E.; Ehlinger, V.; Hollody, K.; Virella, D.; Vik, T.; Arnaud, C. Classification of events contributing to postneonatal cerebral palsy: Development, reliability, and recommendations for use. Dev. Med. Child. Neurol. 2023, 66, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, M.; Sarecka-Hujar, B.; Kopyta, I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr. Dis. Treat. 2020, 16, 1505–1518. [Google Scholar] [CrossRef]
- Graham, H.K.; Rosenbaum, P.; Paneth, N.; Dan, B.; Lin, J.P.; Damiano, D.L.; Becher, J.G.; Gaebler-Spira, D.; Colver, A.; Reddihough, D.S.; et al. Cerebral palsy. Nat. Rev. Dis. Primers 2016, 2, 15082. [Google Scholar] [CrossRef]
- Vitrikas, K.; Dalton, H.; Breish, D. Cerebral Palsy: An Overview. Am. Fam. Physician 2020, 101, 213–220. [Google Scholar]
- Liao, H.F.; Jeng, S.F.; Lai, J.S.; Cheng, C.K.; Hu, M.H. The relation between standing balance and walking function in children with spastic diplegic cerebral palsy. Dev. Med. Child. Neurol. 1997, 39, 106–112. [Google Scholar] [CrossRef]
- Boulet, S.L.; Boyle, C.A.; Schieve, L.A. Health Care Use and Health and Functional Impact of Developmental Disabilities Among US Children, 1997–2005. Arch. Pediatr. Adolesc. Med. 2009, 163, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Verschuren, O.; Takken, T. Aerobic capacity in children and adolescents with cerebral palsy. Res. Dev. Disabil. 2010, 31, 1352–1357. [Google Scholar] [CrossRef]
- Moreau, N.G.; Falvo, M.J.; Damiano, D.L. Rapid force generation is impaired in cerebral palsy and is related to decreased muscle size and functional mobility. Gait Posture 2012, 35, 154–158. [Google Scholar] [CrossRef]
- Bar-Or, O. Role of exercise in the assessment and management of neuromuscular disease in children. Med. Sci. Sports Exerc. 1996, 28, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Leunkeu, A.N.; Gayda, M.; Merzouk, A.; Temfemo, A.; Lecoutre, N.; Ahmaidi, S. Aptitudes cardiorespiratoires à l’exercice et fonction musculaire périphérique chez des enfants infirmes moteurs d’origine cérébrale. Sci. Sport. 2005, 20, 293–296. [Google Scholar] [CrossRef]
- Wiley, M.E.; Damiano, D.L. Lower-extremity strength profiles in spastic cerebral palsy. Dev. Med. Child. Neurol. 1998, 40, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Verschuren, O.; Bloemen, M.; Kruitwagen, C.; Takken, T. Reference values for anaerobic performance and agility in ambulatory children and adolescents with cerebral palsy. Dev. Med. Child. Neurol. 2010, 52, e222–e228. [Google Scholar] [CrossRef] [PubMed]
- Kruse, A.; Schranz, C.; Svehlik, M.; Tilp, M. Mechanical muscle and tendon properties of the plantar flexors are altered even in highly functional children with spastic cerebral palsy. Clin. Biomech. 2017, 50, 139–144. [Google Scholar] [CrossRef]
- Barrett, R.S.; Lichtwark, G.A. Gross muscle morphology and structure in spastic cerebral palsy: A systematic review. Dev. Med. Child. Neurol. 2010, 52, 794–804. [Google Scholar] [CrossRef]
- Moreau, N.G.; Simpson, K.N.; Teefey, S.A.; Damiano, D.L. Muscle architecture predicts maximum strength and is related to activity levels in cerebral palsy. Phys. Ther. 2010, 90, 1619–1630. [Google Scholar] [CrossRef]
- Lieber, R.L.; Loren, G.J.; Fridén, J. In vivo measurement of human wrist extensor muscle sarcomere length changes. J. Neurophysiol. 1994, 71, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.R.; Lee, K.S.; Ward, S.R.; Chambers, H.G.; Lieber, R.L. Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length. J. Physiol. 2011, 589, 2625–2639. [Google Scholar] [CrossRef]
- Nilay Çömük, B. Current Rehabilitation Methods for Cerebral Palsy. In Cerebral Palsy; Mintaze Kerem, G., Ed.; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
- Koman, L.A.; Smith, B.P.; Shilt, J.S. Cerebral palsy. Lancet 2004, 363, 1619–1631. [Google Scholar] [CrossRef]
- Novak, I.; Morgan, C.; Fahey, M.; Finch-Edmondson, M.; Galea, C.; Hines, A.; Langdon, K.; Namara, M.M.; Paton, M.C.; Popat, H.; et al. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr. Neurol. Neurosci. Rep. 2020, 20, 3. [Google Scholar] [CrossRef]
- Damiano, D.L.; Alter, K.E.; Chambers, H. New clinical and research trends in lower extremity management for ambulatory children with cerebral palsy. Phys. Med. Rehabil. Clin. N. Am. 2009, 20, 469–491. [Google Scholar] [CrossRef] [PubMed]
- Hösl, M.; Böhm, H.; Eck, J.; Döderlein, L.; Arampatzis, A. Effects of backward-downhill treadmill training versus manual static plantarflexor stretching on muscle-joint pathology and function in children with spastic Cerebral Palsy. Gait Posture 2018, 65, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Franki, I.; Desloovere, K.; De Cat, J.; Feys, H.; Molenaers, G.; Calders, P.; Vanderstraeten, G.; Himpens, E.; Van Broeck, C. The evidence-base for basic physical therapy techniques targeting lower limb function in children with cerebral palsy: A systematic review using the International Classification of Functioning, Disability and Health as a conceptual framework. J. Rehabil. Med. 2012, 44, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Damiano, D.L.; Vaughan, C.L.; Abel, M.F. Muscle response to heavy resistance exercise in children with spastic cerebral palsy. Dev. Med. Child. Neurol. 1995, 37, 731–739. [Google Scholar] [CrossRef] [PubMed]
- McBurney, H.; Taylor, N.F.; Dodd, K.J.; Graham, H.K. A qualitative analysis of the benefits of strength training for young people with cerebral palsy. Dev. Med. Child. Neurol. 2003, 45, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Faigenbaum, A.D.; Falk, B.; Klentrou, P. Canadian Society for Exercise Physiology position paper: Resistance training in children and adolescents. Appl. Physiol. Nutr. Metab. 2008, 33, 547–561. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, D.T.; Gomez, J.; Johnson, M.D.; Martin, T.J.; Rowland, T.W.; Small, E.; LeBlanc, C.; Malina, R.; Krein, C.; Young, J.C.; et al. Strength training by children and adolescents. Pediatrics 2001, 107, 1470–1472. [Google Scholar] [CrossRef]
- McCambridge, T.M.; Stricker, P.R. Strength training by children and adolescents. Pediatrics 2008, 121, 835–840. [Google Scholar] [CrossRef]
- Blimkie, C.J. Resistance training during preadolescence. Issues and controversies. Sports Med. 1993, 15, 389–407. [Google Scholar] [CrossRef]
- Merino-Andrés, J.; García de Mateos-López, A.; Damiano, D.L.; Sánchez-Sierra, A. Effect of muscle strength training in children and adolescents with spastic cerebral palsy: A systematic review and meta-analysis. Clin. Rehabil. 2022, 36, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, A.; Henriquez, M.; Penailillo, L. Effects of lower limb eccentric strength training on functional measurements in football players with cerebral palsy. Eur. J. Adapt. Phys. Act. 2021, 14, 2. [Google Scholar] [CrossRef]
- Ryan, J.M.; Cassidy, E.E.; Noorduyn, S.G.; O’Connell, N.E. Exercise interventions for cerebral palsy. Cochrane Database Syst. Rev. 2017, 6, Cd011660. [Google Scholar] [CrossRef]
- Randell, A.D.; Cronin, J.B.; Keogh, J.W.; Gill, N.D. Transference of Strength and Power Adaptation to Sports Performance-Horizontal and Vertical Force Production. Strength. Cond. J. 2010, 32, 100–106. [Google Scholar] [CrossRef]
- Rutherford, O.M.; Greig, C.A.; Sargeant, A.J.; Jones, D.A. Strength training and power output: Transference effects in the human quadriceps muscle. J. Sports Sci. 1986, 4, 101–107. [Google Scholar] [CrossRef]
- Moreau, N.G.; Gannotti, M.E. Addressing muscle performance impairments in cerebral palsy: Implications for upper extremity resistance training. J. Hand Ther. 2015, 28, 91–99; quiz 100. [Google Scholar] [CrossRef] [PubMed]
- Palisano, R.; Rosenbaum, P.; Walter, S.; Russell, D.; Wood, E.; Galuppi, B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev. Med. Child. Neurol. 1997, 39, 214–223. [Google Scholar] [CrossRef]
- Moreau, N.G.; Holthaus, K.; Marlow, N. Differential adaptations of muscle architecture to high-velocity versus traditional strength training in cerebral palsy. Neurorehabil. Neural. Repair. 2013, 27, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Kara, O.K.; Gursen, C.; Cetin, S.Y.; Tascioglu, E.N.; Muftuoglu, S.; Damiano, D.L. The effects of power exercises on body structure and function, activity and participation in children with cerebral palsy: An ICF-based systematic review. Disabil. Rehabil. 2023, 45, 3705–3718. [Google Scholar] [CrossRef]
- Drumm, M.; Fabiano, J.; Lee, E.; Jezequel, J.; Rao, A.K.; Yoon, L. Effects of Power Training on Gait, Power, and Function in Children with Cerebral Palsy. Phys. Occup. Ther. Pediatr. 2022, 42, 227–241. [Google Scholar] [CrossRef]
- Murad, M.H.; Asi, N.; Alsawas, M.; Alahdab, F. New evidence pyramid. Evid. Based Med. 2016, 21, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Markovic, G.; Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010, 40, 859–895. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Álvarez, C.; García-Hermoso, A.; Ramírez-Vélez, R.; Gentil, P.; Asadi, A.; Chaabene, H.; Moran, J.; Meylan, C.; García-de-Alcaraz, A.; et al. Methodological Characteristics and Future Directions for Plyometric Jump Training Research: A Scoping Review. Sports Med. 2018, 48, 1059–1081. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Moran, J.; Chaabene, H.; Granacher, U.; Behm, D.G.; García-Hermoso, A.; Izquierdo, M. Methodological characteristics and future directions for plyometric jump training research: A scoping review update. Scand. J. Med. Sci. Sports 2020, 30, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Komi, P.V. Stretch shortening cycle. In Strength and Power in Sport, Komi, P.V., Ed.; Blackwell Science: Oxford, UK, 2003; pp. 184–202. [Google Scholar]
- Radnor, J.M.; Oliver, J.L.; Waugh, C.M.; Myer, G.D.; Moore, I.S.; Lloyd, R.S. The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Med. 2018, 48, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Tricoli, V.; Roschel, H.; Nakamura, F.Y.; Cal Abad, C.C.; Kobal, R.; Gil, S.; González-Badillo, J.J. Transference of traditional versus complex strength and power training to sprint performance. J. Hum. Kinet. 2014, 41, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Ford, K.R.; Hoogenboom, B.J.; Myer, G.D. Understanding and preventing acl injuries: Current biomechanical and epidemiologic considerations—update 2010. N Am J Sports Phys Ther 2010, 5, 234–251. [Google Scholar]
- Hewett, T.E.; Myer, G.D.; Ford, K.R. Reducing knee and anterior cruciate ligament injuries among female athletes: A systematic review of neuromuscular training interventions. J. Knee Surg. 2005, 18, 82–88. [Google Scholar] [CrossRef]
- Hewett, T.E.; Stroupe, A.L.; Nance, T.A.; Noyes, F.R. Plyometric training in female athletes—Decreased impact forces and increased hamstring torques. Am. J. Sports Med. 1996, 24, 765–773. [Google Scholar] [CrossRef]
- Steffen, K.; Emery, C.A.; Romiti, M.; Kang, J.; Bizzini, M.; Dvorak, J.; Finch, C.F.; Meeuwisse, W.H. High adherence to a neuromuscular injury prevention programme (FIFA 11+) improves functional balance and reduces injury risk in Canadian youth female football players: A cluster randomised trial. Br. J. Sports Med. 2013, 47, 794–802. [Google Scholar] [CrossRef]
- Gomes Neto, M.; Conceição, C.S.; de Lima Brasileiro, A.J.A.; de Sousa, C.S.; Carvalho, V.O.; de Jesus, F.L.A. Effects of the FIFA 11 training program on injury prevention and performance in football players: A systematic review and meta-analysis. Clin. Rehabil. 2017, 31, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Rossler, R.; Donath, L.; Bizzini, M.; Faude, O. A new injury prevention programme for children’s football--FIFA 11+ Kids--can improve motor performance: A cluster-randomised controlled trial. J. Sports Sci. 2016, 34, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Elnaggar, R.K.; Mahmoud, W.S.; Alsubaie, S.F.; Abd El-Nabie, W.A. Effectiveness of a Multi-Modal Exercise Program Incorporating Plyometric and Balance Training in Children With Hemiplegic Cerebral Palsy: A Three-Armed Randomized Clinical Trial. Phys. Occup. Ther. Pediatr. 2022, 42, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Cadore, E.L.; Casas-Herrero, A.; Zambom-Ferraresi, F.; Idoate, F.; Millor, N.; Gómez, M.; Rodriguez-Mañas, L.; Izquierdo, M. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age 2014, 36, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Cronin, J.B.; Faigenbaum, A.D.; Haff, G.G.; Howard, R.; Kraemer, W.J.; Micheli, L.J.; Myer, G.D.; Oliver, J.L. National Strength and Conditioning Association position statement on long-term athletic development. J. Strength. Cond. Res. 2016, 30, 1491–1509. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Faigenbaum, A.D.; Stone, M.H.; Oliver, J.L.; Jeffreys, I.; Moody, J.A.; Brewer, C.; Pierce, K.C.; McCambridge, T.M.; Howard, R.; et al. Position statement on youth resistance training: The 2014 International Consensus. Br. J. Sports Med. 2014, 48, 498–505. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Meyers, R.W.; Oliver, J.L. The natural development and trainability of plyometric ability during childhood. Strength. Cond. J. 2011, 33, 23–32. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L. The Youth Physical Development Model: A New Approach to Long-Term Athletic Development. Strength. Cond. J. 2012, 34, 61–72. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Howard, R.; De Ste Croix, M.B.; Williams, C.A.; Best, T.M.; Alvar, B.A.; Micheli, L.J.; Thomas, D.P.; et al. Long-term athletic development, part 2: Barriers to success and potential solutions. J. Strength. Cond. Res. 2015, 29, 1451–1464. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Meyers, R.W.; Moody, J.A.; Stone, M.H. Long-Term Athletic Development and Its Application to Youth Weightlifting. Strength. Cond. J. 2012, 34, 55–66. [Google Scholar] [CrossRef]
- Johnson, B.A.; Salzberg, C.; MacWilliams, B.A.; Shuckra, A.L.; DʼAstous, J.L. Plyometric training: Effectiveness and optimal duration for children with unilateral cerebral palsy. Pediatr. Phys. Ther. 2014, 26, 169–179. [Google Scholar] [CrossRef]
- Noten, S.; Pettersson, K.; Czuba, T.; Cloodt, E.; Casey, J.; Rodby-Bousquet, E. Probability of independent walking and wheeled mobility in individuals with cerebral palsy. Dev. Med. Child. Neurol. 2024, 66, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Auld, M.L.; Johnston, L.M. “Strong and steady”: A community-based strength and balance exercise group for children with cerebral palsy. Disabil. Rehabil. 2014, 36, 2065–2071. [Google Scholar] [CrossRef] [PubMed]
- Chambers, H.G. Treatment of functional limitations at the knee in ambulatory children with cerebral palsy. Eur. J. Neurol. 2001, 8, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Chappell, A.; Allison, G.T.; Gibson, N.; Williams, G.; Morris, S. The effect of a low-load plyometric running intervention on leg stiffness in youth with cerebral palsy: A randomised controlled trial. Gait Posture 2021, 90, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Clutterbuck, G.L.; Auld, M.L.; Johnston, L.M. SPORTS STARS: A practitioner-led, peer-group sports intervention for ambulant children with cerebral palsy. Activity and participation outcomes of a randomised controlled trial. Disabil. Rehabil. 2022, 44, 948–956. [Google Scholar] [CrossRef]
- Correa, T.A.; Schache, A.G.; Graham, H.K.; Baker, R.; Thomason, P.; Pandy, M.G. Potential of lower-limb muscles to accelerate the body during cerebral palsy gait. Gait Posture 2012, 36, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Elnaggar, R.K. Effects of plyometric exercises on muscle-activation strategies and response-capacity to balance threats in children with hemiplegic cerebral palsy. Physiother. Theory Pract. 2022, 38, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Elnaggar, R.K.; Alqahtani, B.A.; Alsubaie, S.F.; Mohamed, R.R.; Elbanna, M.F. Stretch-shortening cycle exercises can efficiently optimize gait-symmetry and balance capabilities in children with unilateral cerebral palsy: A randomized controlled trial. NeuroRehabilitation 2021, 49, 139–149. [Google Scholar] [CrossRef]
- Elnaggar, R.K.; Elbanna, M.F.; Mahmoud, W.S.; Alqahtani, B.A. Plyometric exercises: Subsequent changes of weight-bearing symmetry, muscle strength and walking performance in children with unilateral cerebral palsy. J. Musculoskelet. Neuronal Interact. 2019, 19, 507–515. [Google Scholar]
- Engsberg, J.R.; Ross, S.A.; Collins, D.R. Increasing ankle strength to improve gait and function in children with cerebral palsy: A pilot study. Pediatr. Phys. Ther. 2006, 18, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, J.R.; Gallinger, T.; Prince, F. How Can Biomechanics Improve Physical Preparation and Performance in Paralympic Athletes? A Narrative Review. Sports 2021, 9, 89. [Google Scholar] [CrossRef] [PubMed]
- González, L.; Argüelles, J.; González, V.; Winge, K.; Iscar, M.; Olmedillas, H.; Blanco, M.; Valenzuela, P.L.; Lucia, A.; Federolf, P.A.; et al. Slackline Training in Children with Spastic Cerebral Palsy: A Randomized Clinical Trial. Int. J. Environ. Res. Public. Health 2020, 17, 8649. [Google Scholar] [CrossRef] [PubMed]
- Kaya Kara, O.; Livanelioglu, A.; Yardımcı, B.N.; Soylu, A.R. The Effects of Functional Progressive Strength and Power Training in Children With Unilateral Cerebral Palsy. Pediatr. Phys. Ther. 2019, 31, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Kirk, H.; Geertsen, S.S.; Lorentzen, J.; Krarup, K.B.; Bandholm, T.; Nielsen, J.B. Explosive Resistance Training Increases Rate of Force Development in Ankle Dorsiflexors and Gait Function in Adults With Cerebral Palsy. J. Strength. Cond. Res. 2016, 30, 2749–2760. [Google Scholar] [CrossRef]
- Parent, A.; Dal Maso, F.; Pouliot-Laforte, A.; Cherni, Y.; Marois, P.; Ballaz, L. Short Walking Exercise Leads to Gait Changes and Muscle Fatigue in Children With Cerebral Palsy Who Walk With Jump Gait. Am. J. Phys. Med. Rehabil. 2021, 100, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Peña-González, I.; Sarabia, J.M.; Manresa-Rocamora, A.; Moya-Ramón, M. International football players with cerebral palsy maintained their physical fitness after a self-training program during the COVID-19 lockdown. PeerJ 2022, 10, e13059. [Google Scholar] [CrossRef] [PubMed]
- Peña-González, I.; Sarabia, J.M.; Roldan, A.; Manresa-Rocamora, A.; Moya-Ramón, M. Physical Performance Differences Between Spanish Selected and Nonselected Para-Footballers With Cerebral Palsy for the National Team. Int. J. Sports Physiol. Perform. 2021, 16, 1676–1683. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.; Cameirão, M.S.; Bermúdez i Badia, S. The impact of exergames on the functional balance of a teenager with cerebral palsy—a case report. Disabil. Rehabil. Assist. Technol. 2021, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Reina, R.; Iturricastillo, A.; Sabido, R.; Campayo-Piernas, M.; Yanci, J. Vertical and Horizontal Jump Capacity in International Cerebral Palsy Football Players. Int. J. Sports Physiol. Perform. 2018, 13, 597–603. [Google Scholar] [CrossRef]
- Runciman, P.; Tucker, R.; Ferreira, S.; Albertus-Kajee, Y.; Derman, W. Effects of Induced Volitional Fatigue on Sprint and Jump Performance in Paralympic Athletes with Cerebral Palsy. Am. J. Phys. Med. Rehabil. 2016, 95, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T.; Aldous, S.; Williams, G.; Fahey, M. Systematic review of high-level mobility training in people with a neurological impairment. Brain Inj. 2018, 32, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Verschuren, O.; Peterson, M.D.; Balemans, A.C.; Hurvitz, E.A. Exercise and physical activity recommendations for people with cerebral palsy. Dev. Med. Child. Neurol. 2016, 58, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.; Hassett, L.; Clark, R.; Bryant, A.; Olver, J.; Morris, M.E.; Ada, L. Improving Walking Ability in People With Neurologic Conditions: A Theoretical Framework for Biomechanics-Driven Exercise Prescription. Arch. Phys. Med. Rehabil. 2019, 100, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Perez-Castilla, A.; Thapa, R.K.; Afonso, J.; Clemente, F.M.; Colado, J.C.; de Villarreal, E.S.; Chaabene, H. Effects of Plyometric Jump Training on Measures of Physical Fitness and Sport-Specific Performance of Water Sports Athletes: A Systematic Review with Meta-analysis. Sports Med. Open 2022, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Hollung, S.J.; Bakken, I.J.; Vik, T.; Lydersen, S.; Wiik, R.; Aaberg, K.M.; Andersen, G.L. Comorbidities in cerebral palsy: A patient registry study. Dev. Med. Child. Neurol. 2020, 62, 97–103. [Google Scholar] [CrossRef] [PubMed]
- National Guideline, A. National Guideline, A. National Institute for Health and Care Excellence: Guidelines. In Cerebral Palsy in under 25s: Assessment and Management; National Institute for Health and Care Excellence (NICE): London, UK, 2017. [Google Scholar]
- Ferrara, M.; Laskin, J. Cerebral palsy. In ACSM’s Exercise Management for Persons With Chronic Diseases and Disabilities; Durstine, J.L., Ed.; Human Kinetics: Champaign IL, USA, 1997; Chapter 36; pp. 206–211. [Google Scholar]
- Iida, Y.; Kanehisa, H.; Inaba, Y.; Nakazawa, K. Short-term landing training attenuates landing impact and improves jump height in landing-to-jump movement. J. Strength. Cond. Res. 2013, 27, 1560–1567. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public. Health Rep. 1985, 100, 126–131. [Google Scholar]
- Verschuren, O.; Takken, T.; Ketelaar, M.; Gorter, J.W.; Helders, P.J.M. Reliability for Running Tests for Measuring Agility and Anaerobic Muscle Power in Children and Adolescents with Cerebal Palsy. Pediatr. Phys. Ther. 2007, 19, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Moseley, A.M.; Rahman, P.; Wells, G.A.; Zadro, J.R.; Sherrington, C.; Toupin-April, K.; Brosseau, L. Agreement between the Cochrane risk of bias tool and Physiotherapy Evidence Database (PEDro) scale: A meta-epidemiological study of randomized controlled trials of physical therapy interventions. PLoS ONE 2019, 14, e0222770. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, E.; Ristić, V.; McMaster, D.T.; Milanović, Z. Effect of plyometric training on vertical jump performance in female athletes: A systematic review and meta-analysis. Sports Med. 2017, 47, 975–986. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Arazi, H.; Young, W.B.; Saez de Villarreal, E. The effects of plyometric training on change-of-direction ability: A meta-analysis. Int. J. Sports Physiol. Perform. 2016, 11, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, A.K.; Singh, U.; Ramirez-Campillo, R.; Clemente, F.M.; Afonso, J.; Granacher, U. Effects of plyometric jump training on balance performance in healthy participants: A systematic review with meta-analysis. Front. Physiol. 2021, 12, 730945. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Sugimoto, D.; Thomas, S.; Hewett, T.E. The influence of age on the effectiveness of neuromuscular training to reduce anterior cruciate ligament injury in female athletes: A meta-analysis. Am. J. Sports Med. 2013, 41, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Valentine, J.C.; Pigott, T.D.; Rothstein, H.R. How many studies do you need?: A primer on statistical power for meta-analysis. J. Ed. Behav. Stat. 2010, 35, 215–247. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Ramírez-Campillo, R.; Izquierdo, M. Is muscular fitness associated with future health benefits in children and adolescents? a systematic review and meta-analysis of longitudinal studies. Sports Med. 2019, 49, 1079–1094. [Google Scholar] [CrossRef]
- Moran, J.; Ramirez-Campillo, R.; Granacher, U. Effects of jumping exercise on muscular power in older adults: A meta-analysis. Sports Med. 2018, 48, 2843–2857. [Google Scholar] [CrossRef]
- Pigott, T. Advances in Meta-Analysis; Springer-Verlag: New York, NY, UAS, 2012. [Google Scholar]
- Abt, G.; Boreham, C.; Davison, G.; Jackson, R.; Nevill, A.; Wallace, E.; Williams, M. Power, precision, and sample size estimation in sport and exercise science research. J. Sports Sci. 2020, 38, 1933–1935. [Google Scholar] [CrossRef] [PubMed]
- Arnett, M.G.; Lutz, B. Effects of rope-jump training on the os calcis stiffness index of postpubescent girls. Med. Sci. Sports Exerc. 2002, 34, 1913–1919. [Google Scholar] [CrossRef] [PubMed]
- Deeks, J.J.; Higgins, J.P.; Altman, D.G. Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P., Green, S., Eds.; The Cochrane Collaboration: London, UK, 2008; pp. 243–296. [Google Scholar]
- Kontopantelis, E.; Springate, D.A.; Reeves, D. A re-analysis of the Cochrane Library data: The dangers of unobserved heterogeneity in meta-analyses. PLoS ONE 2013, 8, e69930. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Higgins; Deeks, J.J.; Altman, D.G. Special topics in statistics. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P., Green, S., Eds.; The Cochrane Collaboration: London, UK, 2008; pp. 481–529. [Google Scholar]
- Higgins; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef]
- Zhang, Y.; Alonso-Coello, P.; Guyatt, G.H.; Yepes-Nuñez, J.J.; Akl, E.A.; Hazlewood, G.; Pardo-Hernandez, H.; Etxeandia-Ikobaltzeta, I.; Qaseem, A.; Williams, J.W., Jr.; et al. GRADE Guidelines: 19. Assessing the certainty of evidence in the importance of outcomes or values and preferences—Risk of bias and indirectness. J. Clin. Epidemiol. 2019, 111, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Coello, P.A.; Guyatt, G.H.; Yepes-Nuñez, J.J.; Akl, E.A.; Hazlewood, G.; Pardo-Hernandez, H.; Etxeandia-Ikobaltzeta, I.; Qaseem, A.; Williams, J.W., Jr.; et al. GRADE guidelines: 20. Assessing the certainty of evidence in the importance of outcomes or values and preferences—inconsistency, imprecision, and other domains. J. Clin. Epidemiol. 2019, 111, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.; Oxman, A.D.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Rind, D.; Devereaux, P.J.; Montori, V.M.; Freyschuss, B.; Vist, G.; et al. Corrigendum to GRADE guidelines 6. Rating the quality of evidence-imprecision. J Clin Epidemiol 2011;64:1283–1293. J Clin Epidemiol 2021, 137, 265. [Google Scholar] [CrossRef]
- Elnaggar, R.K.; Alghamdi, M.S.; Alenazi, A.M.; Alghadier, M.; Mahmoud, M.Z.; Elsayed, A.E.A.; Hassan, I.A.M.; Abonour, A.A. Mechanical and Morphological Changes of the Plantar Flexor Musculotendinous Unit in Children with Unilateral Cerebral Palsy Following 12 Weeks of Plyometric Exercise: A Randomized Controlled Trial. Children 2022, 9, 1604. [Google Scholar] [CrossRef]
- Elnaggar, R.K.; Diab, R.H.; Abonour, A.A.; Alsubaie, S.F.; Alrawaili, S.M.; Alghadier, M.; Mohamed, E.H.; Abd-Elmonem, A.M. Paretic-Limb-Only Plyometric Training Outperforms Volume-Matched Double-Limb Training for Ameliorating Balance Capability and Gait Symmetry in Adolescents with Unilateral Cerebral Palsy: A Comparative Study. Children 2022, 9, 1563. [Google Scholar] [CrossRef] [PubMed]
- Elnaggar, R.K.; Alghadier, M.; Abdrabo, M.S.; Abonour, A.A. Effect of a structured aqua-plyometric exercise program on postural control and functional ability in children with hemiparetic cerebral palsy: A two-arm randomized controlled trial. NeuroRehabilitation 2022, 51, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Sáez de Villarreal, E.; Requena, B.; Newton, R.U. Does plyometric training improve strength performance? A meta-analysis. J. Sci. Med. Sport. 2010, 13, 513–522. [Google Scholar] [CrossRef]
- Ramírez-Campillo, R.; Andrade, D.C.; Izquierdo, M. Effects of plyometric training volume and training surface on explosive strength. J. Strength. Cond. Res. 2013, 27, 2714–2722. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Garcia-Pinillos, F.; Chaabene, H.; Moran, J.; Behm, D.G.; Granacher, U. Effects of plyometric jump training on electromyographic activity and its relationship to strength and jump performance in healthy trained and untrained populations: A systematic review of randomized controlled trials. J. Strength. Cond. Res. 2021, 35, 2053–2065. [Google Scholar] [CrossRef] [PubMed]
- Malisoux, L.; Francaux, M.; Nielens, H.; Renard, P.; Lebacq, J.; Theisen, D. Calcium sensitivity of human single muscle fibers following plyometric training. Med. Sci. Sports Exerc. 2006, 38, 1901–1908. [Google Scholar] [CrossRef] [PubMed]
- Malisoux, L.; Francaux, M.; Nielens, H.; Theisen, D. Stretch-shortening cycle exercises: An effective training paradigm to enhance power output of human single muscle fibers. J. Appl. Physiol. 2006, 100, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; García-Pinillos, F.; Nikolaidis, P.T.; Clemente, F.; Gentil, P.; García-Hermoso, A. Body composition adaptations to lower-body plyometric training: A systematic review and meta-analysis. Biol. Sport. 2022, 39, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Arntz, F.; Mkaouer, B.; Markov, A.; Schoenfeld, B.J.; Moran, J.; Ramirez-Campillo, R.; Behrens, M.; Baumert, P.; Erskine, R.M.; Hauser, L.; et al. Effect of Plyometric Jump Training on Skeletal Muscle Hypertrophy in Healthy Individuals: A Systematic Review With Multilevel Meta-Analysis. Front. Physiol. 2022, 13, 888464. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J.; Mikulic, P. Effects of plyometric vs. resistance training on skeletal muscle hypertrophy: A review. J. Sport. Health Sci. 2021, 10, 530–536. [Google Scholar] [CrossRef]
- Rojas, V.G.; Rebolledo, G.M.; Muñoz, E.G.; Cortés, N.I.; Gaete, C.B.; Delgado, C.M. Differences in standing balance between patients with diplegic and hemiplegic cerebral palsy. Neural Regen. Res. 2013, 8, 2478–2483. [Google Scholar] [CrossRef]
- Ungureanu, A.; Rusu, L.; Rusu, M.R.; Marin, M.I. Balance Rehabilitation Approach by Bobath and Vojta Methods in Cerebral Palsy: A Pilot Study. Children 2022, 9, 1481. [Google Scholar] [CrossRef]
- Andersson, C.; Mattsson, E. Adults with cerebral palsy: A survey describing problems, needs, and resources, with special emphasis on locomotion. Dev. Med. Child. Neurol. 2001, 43, 76–82. [Google Scholar] [CrossRef]
- Mitchell, L.E.; Ziviani, J.; Boyd, R.N. Habitual physical activity of independently ambulant children and adolescents with cerebral palsy: Are they doing enough? Phys. Ther. 2015, 95, 202–211. [Google Scholar] [CrossRef]
- Carlon, S.L.; Taylor, N.F.; Dodd, K.J.; Shields, N. Differences in habitual physical activity levels of young people with cerebral palsy and their typically developing peers: A systematic review. Disabil. Rehabil. 2013, 35, 647–655. [Google Scholar] [CrossRef]
Category | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Studies that included male and female participants with cerebral palsy aged ≤18 years, with no restrictions concerning the level of physical fitness or the sport practiced. | Studies that included participants aged >18 years or individuals with comorbidities to cerebral palsy [90,91] considered a contraindication [92] and/or precluding to engage fully (e.g., maximal or near-maximal effort) in a plyometric-jump training program (e.g., acute musculoskeletal injuries, recent surgery). |
Intervention | Studies that included a plyometric-jump training program lasting ≥2 weeks with at least ≥6 total training sessions (i.e., minimal effective dose) [93], which included unilateral and/or bilateral jump exercises, loaded or unloaded, with repeated (cyclical) or non-repeated (non-cyclical) jumps, which commonly utilize long (countermovement jump) or short (drop jump) stretch shortening cycles. | Studies that included exercise interventions not involving plyometric-jump training (e.g., upper-body plyometrics only) or exercise interventions involving plyometric-jump training programs representing less than 50% of the total dedicated-intervention training load (i.e., lower-limbs number of exercises) when delivered in conjunction with other training interventions (e.g., high-load resistance training). |
Control (comparator) | Studies that included active (e.g., standard therapy), specific-active (e.g., alternative therapy; regular sport practice), or passive control groups, involving participants with or without cerebral palsy. | Studies without a control group. |
Outcome | Studies reporting at least one measure related to physical fitness (e.g., jump height-distance or related jump measure [e.g., force; power]; body composition; muscle strength; asymmetries; rate of force or torque development) a before and after the training intervention. | Studies without baseline and/or follow-up physical fitness data. |
Study design | Experimental studies using (randomized) controlled designs. | Single-group interventions, no controls. |
Criteria | Reviewed Studies | |||||||
---|---|---|---|---|---|---|---|---|
Chappell et al. [67] | Elnaggar et al. [55] | Elnaggar et al. [72] | Elnaggar et al. [71] | Elnaggar et al. [118] | Elnaggar et al. [117] | Elnaggar et al. [119] | Elnaggar et al. [70] | |
Eligibility criteria were specified. | YES | YES | YES | YES | YES | YES | YES | YES |
Subjects were randomly allocated to groups. | YES | YES | YES | YES | YES | YES | YES | YES |
Allocation was concealed. | NO | YES | YES | YES | YES | YES | YES | YES |
The groups were similar at baseline regarding the most important prognostic indicators. | YES | YES | YES | YES | YES | YES | YES | YES |
There was blinding of all subjects. | NO | NO | NO | NO | NO | NO | NO | NO |
There was blinding of all therapists who administered the therapy. | NO | NO | NO | NO | NO | NO | NO | NO |
There was blinding of all assessors who measured at least one key outcome. | NO | YES | YES | YES | YES | YES | YES | YES |
Measures of at least one key outcome were obtained from more than 85% of the subjects initially allocated to groups. | NO | YES | YES | YES | YES | YES | YES | YES |
All subjects for whom outcome measures were available received the treatment or control condition as allocated or, where this was not the case, data for at least one key outcome was analysed by “intention to treat”. | NO | YES | NO | YES | YES | YES | YES | NO |
The results of between-group statistical comparisons are reported for at least one key outcome. | YES | YES | YES | YES | YES | YES | YES | YES |
The study provides both point measures and measures of variability for at least one key outcome. | YES | YES | YES | YES | YES | YES | YES | YES |
Total PEDro score | 4/10 | 8/10 | 7/10 | 8/10 | 8/10 | 8/10 | 8/10 | 7/10 |
Study | Rand | Sex | Age (years) | Body Mass (kg) | Height (cm) | Fr | Weeks | CP Classification Declared | Int | Facilitator | Environment | PJT Exercises |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chappell et al. [67] | Yes | Mix | 12.9 | NR | NR | 4 | 12 | GMFCS levels I and II | NR | Physiotherapist | Group setting and home program | Jump, hop, run |
Elnaggar et al. [72] | Yes | Mix | 9.5 | 34.6 | 134 | 2 | 8 | Unilateral | High | Pediatric physiotherapist | Structured clinical setting | Bound, Forward jump, Forward hop, Counter jump, Lateral leap, Stride jump, Squat jump, Tuck jump, Step jump, Step hop |
Elnaggar et al. [71] | Yes | Mix | 10.4 | 42.5 | 141 | 2 | 8 | Unilateral | NR | Pediatric physiotherapist | Structured clinical setting | Bound, Forward jump, Forward hop, Counter jump, Lateral leap, Stride jump, Squat jump, Tuck jump, Step jump, Step hop |
Elnaggar et al. [55] | Yes | Mix | 10.0/10.0 a | 35.2/34.6 | 131/132 | 2 | 8 | Spastic hemiplegic | High | Pediatric physiotherapist | Structured clinical setting | Bound, Forward jump, Forward hop, Counter jump, Lateral leap, Stride jump, Squat jump, Tuck jump, Step jump, Step hop |
Elnaggar et al. [70] | Yes | Mix | 10.6 | 43.3 | 142 | 2 | 12 | Hemiplegic | High | Pediatric physiotherapist | Structured clinical setting | Bound, Forward-jump, Single-leg forward hop, Lateral leap, Side-to-side jump, Reciprocal stride-jump, Squat-jump, Tuck-jump, High-step hop, High-step jump |
Elnaggar et al. [117] | Yes | Mix | 13.0 | 47.5 | 149 | 2 | 12 | Unilateral | High | Pediatric physiotherapist | Structured clinical setting | Bound, Forward-jump, Single-leg forward hop, Lateral leap, Side-to-side jump, Reciprocal stride-jump, Squat-jump, Tuck-jump, High-step hop, High-step jump |
Elnaggar et al. [118] | Yes | Mix | 14.6/14.5 | 50.3/51.8 | 152/154 | 2 | 12 | Unilateral | High | Pediatric physiotherapist | Structured clinical setting | Lateral push-off, Jump split squat, SLVJ, Single-leg tuck jump, Double-leg hop, Side-to-side jump, Reciprocal stride-jump, Double-leg vertical jump, Double-leg tuck jump |
Elnaggar et al. [119] | Yes | Mix | 13.4 | 42.6 | 141 | 3 | 12 | Hemiparetic | High | Physiotherapist | Structured aquatic setting | Ankle hop, Single-leg hop, Tuck jump, Countermovement jump, Lateral jump, Standing long jump, Drop jump, Box jump, One-leg jump vertical, One-leg jump lateral |
Outcomes * | Number of Studies (PSS) | Risk of Bias in Studies | Risk of Publication Bias | Inconsistency | Imprecision | Certainty of Evidence |
---|---|---|---|---|---|---|
Muscle strength | 4 (n = 190) | No downgrading | Not applicable | No downgrading (I2 = 5.4%) | Downgrade by one level: (i) <800 participants; (ii) moderate effect favoring PJT | ⊕⊕⊕ Moderate |
Static balance | 3 (n = 130) | No downgrading | Not applicable | No downgrading (I2 = 0.0%) | Downgrade by one level: (i) <800 participants; (ii) moderate effect favoring PJT | ⊕⊕⊕ Moderate |
Dynamic balance | 4 (n = 175) | No downgrading | Not applicable | Downgraded by two levels (I2 = 81.6%) | Downgrade by one level: (i) <800 participants; (ii) moderate effect favoring PJT | ⊕ Very low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Carrillo, E.; Ramirez-Campillo, R.; Izquierdo, M.; Elnaggar, R.K.; Afonso, J.; Peñailillo, L.; Araneda, R.; Ebner-Karestinos, D.; Granacher, U. Effects of Therapies Involving Plyometric-Jump Training on Physical Fitness of Youth with Cerebral Palsy: A Systematic Review with Meta-Analysis. Sports 2024, 12, 152. https://doi.org/10.3390/sports12060152
Garcia-Carrillo E, Ramirez-Campillo R, Izquierdo M, Elnaggar RK, Afonso J, Peñailillo L, Araneda R, Ebner-Karestinos D, Granacher U. Effects of Therapies Involving Plyometric-Jump Training on Physical Fitness of Youth with Cerebral Palsy: A Systematic Review with Meta-Analysis. Sports. 2024; 12(6):152. https://doi.org/10.3390/sports12060152
Chicago/Turabian StyleGarcia-Carrillo, Exal, Rodrigo Ramirez-Campillo, Mikel Izquierdo, Ragab K. Elnaggar, José Afonso, Luis Peñailillo, Rodrigo Araneda, Daniela Ebner-Karestinos, and Urs Granacher. 2024. "Effects of Therapies Involving Plyometric-Jump Training on Physical Fitness of Youth with Cerebral Palsy: A Systematic Review with Meta-Analysis" Sports 12, no. 6: 152. https://doi.org/10.3390/sports12060152
APA StyleGarcia-Carrillo, E., Ramirez-Campillo, R., Izquierdo, M., Elnaggar, R. K., Afonso, J., Peñailillo, L., Araneda, R., Ebner-Karestinos, D., & Granacher, U. (2024). Effects of Therapies Involving Plyometric-Jump Training on Physical Fitness of Youth with Cerebral Palsy: A Systematic Review with Meta-Analysis. Sports, 12(6), 152. https://doi.org/10.3390/sports12060152