Force Production and Electromyographic Activity during Different Flywheel Deadlift Exercises
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Data Collection
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Sun, Y.; Zhu, W.; Yu, J. The Late Swing and Early Stance of Sprinting Are Most Hazardous for Hamstring Injuries. J. Sport Health Sci. 2017, 6, 133–136. [Google Scholar] [CrossRef]
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Short Biceps Femoris Fascicles and Eccentric Knee Flexor Weakness Increase the Risk of Hamstring Injury in Elite Football (Soccer): A Prospective Cohort Study. Br. J. Sports Med. 2016, 50, 1524–1535. [Google Scholar] [CrossRef]
- Schuermans, J.; Van Tiggelen, D.; Danneels, L.; Witvrouw, E. Susceptibility to Hamstring Injuries in Soccer: A Prospective Study Using Muscle Functional Magnetic Resonance Imaging. Am. J. Sports Med. 2016, 44, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- Zazulak, B.T.; Hewett, T.E.; Reeves, N.P.; Goldberg, B.; Cholewicki, J. Deficits in Neuromuscular Control of the Trunk Predict Knee Injury Risk: Prospective Biomechanical-Epidemiologic Study. Am. J. Sports Med. 2007, 35, 1123–1130. [Google Scholar] [CrossRef]
- Van Hooren, B.; Vanwanseele, B.; Rossom, S.; Teratsias, P.; Willems, P.; Drost, M.; Meijer, K. Muscle Forces and Fascicle Behavior during Three Hamstring Exercises. Scand. Med. Sci. Sports 2022, 32, 997–1012. [Google Scholar] [CrossRef] [PubMed]
- Kellis, E.; Blazevich, A.J. Hamstrings Force-Length Relationships and Their Implications for Angle-Specific Joint Torques: A Narrative Review. BMC Sports Sci. Med. Rehabil. 2022, 14, 166. [Google Scholar] [CrossRef] [PubMed]
- Bourne, M.N.; Duhig, S.J.; Timmins, R.G.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of the Nordic Hamstring and Hip Extension Exercises on Hamstring Architecture and Morphology: Implications for Injury Prevention. Br. J. Sports Med. 2017, 51, 469–477. [Google Scholar] [CrossRef]
- Van Hooren, B.; Bosch, F. Is There Really an Eccentric Action of the Hamstrings during the Swing Phase of High-Speed Running? Part II: Implications for Exercise. J. Sports Sci. 2017, 35, 2322–2333. [Google Scholar] [CrossRef]
- Beato, M.; Maroto-Izquierdo, S.; Turner, A.N.; Bishop, C. Implementing Strength Training Strategies for Injury Prevention in Soccer: Scientific Rationale and Methodological Recommendations. Int. J. Sports Physiol. Perform. 2021, 16, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Lauersen, J.B.; Bertelsen, D.M.; Andersen, L.B. The Effectiveness of Exercise Interventions to Prevent Sports Injuries: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Br. J. Sports Med. 2014, 48, 871–877. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Eccentric Exercise: Physiological Characteristics and Acute Responses. Sports Med. 2017, 47, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Izquierdo, S.; Nosaka, K.; Blazevich, A.J.; González-Gallego, J.; de Paz, J.A. Cross-Education Effects of Unilateral Accentuated Eccentric Isoinertial Resistance Training on Lean Mass and Function. Scand. J. Med. Sci. Sports 2022, 32, 672–684. [Google Scholar] [CrossRef] [PubMed]
- Buckthorpe, M.; Wright, S.; Bruce-Low, S.; Nanni, G.; Sturdy, T.; Gross, A.S.; Bowen, L.; Styles, B.; Della Villa, S.; Davison, M.; et al. Recommendations for Hamstring Injury Prevention in Elite Football: Translating Research into Practice. Br. J. Sports Med. 2019, 53, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, J.; Enoka, R.M. Neural Control of Shortening and Lengthening Contractions: Influence of Task Constraints. J. Physiol. 2008, 586, 5853–5864. [Google Scholar] [CrossRef]
- Brearley, S.; Bishop, C. Transfer of Training: How Specific Should We Be? Strength Cond. J. 2019, 41, 97–109. [Google Scholar] [CrossRef]
- Wagle, J.P.; Taber, C.B.; Cunanan, A.J.; Bingham, G.E.; Carroll, K.M.; DeWeese, B.H.; Sato, K.; Stone, M.H. Accentuated Eccentric Loading for Training and Performance: A Review. Sports Med. 2017, 47, 2473–2495. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing Eccentric Resistance Training—Part 1: A Brief Review of Existing Methods. J. Funct. Morphol. Kinesiol. 2019, 4, 38. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; Garcia-Lopez, D.; Fernandez-Gonzalo, R.; Moreira, O.C.; Gonzalez-Gallego, J.; de Paz, J.A. Skeletal Muscle Functional and Structural Adaptations after Eccentric Overload Flywheel Resistance Training: A Systematic Review and Meta-Analysis. J. Sci. Med. Sport 2017, 20, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Davó, J.L.; Sabido, R.; Blazevich, A.J. High-speed Stretch-shortening Cycle Exercises as a Strategy to Provide Eccentric Overload during Resistance Training. Scand. J. Med. Sci. Sports 2021, 31, 2211–2220. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; Fernandez-Gonzalo, R.; Magdi, H.R.; Manzano-Rodriguez, S.; González-Gallego, J.; De Paz, J.A. Comparison of the Musculoskeletal Effects of Different Iso-Inertial Resistance Training Modalities: Flywheel vs. Electric-Motor. Eur. J. Sport Sci. 2019, 19, 1184–1194. [Google Scholar] [CrossRef]
- Beato, M.; De Keijzer, K.L.; Muñoz-Lopez, A.; Raya-González, J.; Pozzo, M.; Alkner, B.A.; Dello Iacono, A.; Vicens-Bordas, J.; Coratella, G.; Maroto-Izquierdo, S.; et al. Current Guidelines for the Implementation of Flywheel Resistance Training Technology in Sports: A Consensus Statement. Sports Med. 2024, 54, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo-Skok, O.; Tous-Fajardo, J.; Valero-Campo, C.; Berzosa, C.; Bataller, A.V.; Arjol-Serrano, J.L.; Moras, G.; Mendez-Villanueva, A. Eccentric-Overload Training in Team-Sport Functional Performance: Constant Bilateral Vertical Versus Variable Unilateral Multidirectional Movements. Int. J. Sports Physiol. Perform. 2017, 12, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Nunez, F.J.; Santalla, A.; Carrasquila, I.; Asian, J.A.; Reina, J.I.; Suarez-Arrones, L.J. The Effects of Unilateral and Bilateral Eccentric Overload Training on Hypertrophy, Muscle Power and COD Performance, and Its Determinants, in Team Sport Players. PLoS ONE 2018, 13, e0193841. [Google Scholar] [CrossRef] [PubMed]
- de Hoyo, M.; Pozzo, M.; Sanudo, B.; Carrasco, L.; Gonzalo-Skok, O.; Dominguez-Cobo, S.; Moran-Camacho, E. Effects of a 10-Week in-Season Eccentric-Overload Training Program on Muscle-Injury Prevention and Performance in Junior Elite Soccer Players. Int. J. Sports Physiol. Perform. 2015, 10, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Gonzalo, R.; Tesch, P.A.; Linnehan, R.M.; Kreider, R.B.; Di Salvo, V.; Suarez-Arrones, L.; Alomar, X.; Mendez-Villanueva, A.; Rodas, G. Individual Muscle Use in Hamstring Exercises by Soccer Players Assessed Using Functional MRI. Int. J. Sports Med. 2016, 37, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Villanueva, A.; Suarez-Arrones, L.; Rodas, G.; Fernandez-Gonzalo, R.; Tesch, P.; Linnehan, R.; Kreider, R.; Di Salvo, V. MRI-Based Regional Muscle Use during Hamstring Strengthening Exercises in Elite Soccer Players. PLoS ONE 2016, 11, e0161356. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, H.; Saeterbakken, A.H.; Vagle, M.; Fimland, M.S.; Andersen, V. Electromyographic Comparison of Flywheel Inertial Leg Curl and Nordic Hamstring Exercise Among Soccer Players. Int. J. Sports Physiol. Perform. 2021, 16, 97–102. [Google Scholar] [CrossRef]
- Spudić, D.; Smajla, D.; David Burnard, M.; Šarabon, N. Muscle Activation Sequence in Flywheel Squats. Int. J. Environ. Res. Public Health 2021, 18, 3168. [Google Scholar] [CrossRef] [PubMed]
- Martín-Rivera, F.; Beato, M.; Alepuz-Moner, V.; Maroto-Izquierdo, S. Use of Concentric Linear Velocity to Monitor Flywheel Exercise Load. Front. Physiol. 2022, 13, 961572. [Google Scholar] [CrossRef]
- Beato, M.; Dello Iacono, A. Implementing Flywheel (Isoinertial) Exercise in Strength Training: Current Evidence, Practical Recommendations, and Future Directions. Front. Physiol. 2020, 11, 569. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; Nosaka, K.; Alarcón-Gómez, J.; Martín-Rivera, F. Validity and Reliability of Inertial Measurement System for Linear Movement Velocity in Flywheel Squat Exercise. Sensors 2023, 23, 2193. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Izquierdo, S.; Bautista, I.; Rivera, F. Post-Activation Performance Enhancement (PAPE) after a Single-Bout of High-Intensity Flywheel Resistance Training. Biol. Sport 2020, 37, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Diamant, W.; Geisler, S.; Havers, T.; Knicker, A. Comparison of EMG Activity between Single-Leg Deadlift and Conventional Bilateral Deadlift in Trained Amateur Athletes—An Empirical Analysis. Int. J. Exerc. Sci. 2021, 14, 187–201. [Google Scholar] [PubMed]
- Hegyi, A.; Péter, A.; Finni, T.; Cronin, N.J. Region-Dependent Hamstrings Activity in Nordic Hamstring Exercise and Stiff-Leg Deadlift Defined with High-Density Electromyography. Scand. J. Med. Sci. Sports 2018, 28, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Burden, A. How Should We Normalize Electromyograms Obtained from Healthy Participants? What We Have Learned from over 25 years of Research. J. Electromyogr. Kinesiol. 2010, 20, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Azizi, E.; Roberts, T.J. Geared up to Stretch: Pennate Muscle Behavior during Active Lengthening. J. Exp. Biol. 2014, 217, 376–381. [Google Scholar] [CrossRef]
- Chumanov, E.S.; Heiderscheit, B.C.; Thelen, D.G. The Effect of Speed and Influence of Individual Muscles on Hamstring Mechanics during the Swing Phase of Sprinting. J. Biomech. 2007, 40, 3555–3562. [Google Scholar] [CrossRef]
- Yu, L.; Mei, Q.; Xiang, L.; Liu, W.; Mohamad, N.I.; István, B.; Fernandez, J.; Gu, Y. Principal Component Analysis of the Running Ground Reaction Forces With Different Speeds. Front. Bioeng. Biotechnol. 2021, 9, 629809. [Google Scholar] [CrossRef] [PubMed]
- Sjöberg, M.; Berg, H.E.; Norrbrand, L.; Andersen, M.S.; Gutierrez-Farewik, E.M.; Sundblad, P.; Eiken, O. Comparison of Joint and Muscle Biomechanics in Maximal Flywheel Squat and Leg Press. Front. Sports Act. Living 2021, 3, 686335. [Google Scholar] [CrossRef]
- Beato, M.; Maroto-Izquierdo, S.; Hernández-Davó, J.L.; Raya-González, J. Flywheel Training Periodization in Team Sports. Front. Physiol. 2021, 12, 732802. [Google Scholar] [CrossRef]
- Hegyi, A.; Csala, D.; Péter, A.; Finni, T.; Cronin, N.J. High-density Electromyography Activity in Various Hamstring Exercises. Scand. J. Med. Sci. Sports 2019, 29, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Martín-Fuentes, I.; Oliva-Lozano, J.M.; Muyor, J.M. Electromyographic Activity in Deadlift Exercise and Its Variants. A Systematic Review. PLoS ONE 2020, 15, e0229507. [Google Scholar] [CrossRef] [PubMed]
- Alkner, B.A.; Bring, D.K.-I. Muscle Activation During Gravity-Independent Resistance Exercise Compared to Common Exercises. Aerosp. Med. Hum. Perform. 2019, 90, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Chumanov, E.S.; Schache, A.G.; Heiderscheit, B.C.; Thelen, D.G. Hamstrings Are Most Susceptible to Injury during the Late Swing Phase of Sprinting. Br. J. Sports Med. 2012, 46, 90. [Google Scholar] [CrossRef]
Bi + Ver | Bi + Hor | Uni + Ver | Uni + Hor | |
---|---|---|---|---|
Force Average (N) | 488 ± 132 1,2,3 | 263 ± 101 3 | 303 ± 73 3 | 187 ± 50 |
Con Peak (N) | 643 ± 212 2,3 | 696 ± 202 2,3 | 375 ± 115 | 326 ± 98 |
Ecc Peak (N) | 756 ± 272 1,2,3 | 592 ± 163 3 | 495 ± 117 3 | 266 ± 72 |
Muscle activity BFProx sEMGRMS (% max) | 32.2 ± 4.9 | 29.9 ± 7.9 | 31.7 ± 5.1 3 | 27.0 ± 3.9 |
BFProx sEMGpeak (μV) | 206 ± 78 | 177 ± 96 | 234 ± 79 3 | 170 ± 93 |
BFMed sEMGRMS (% max) | 31.8 ± 4.2 3 | 29.2 ± 5.0 | 33.0 ± 4.8 3 | 27.0 ± 4.3 |
BFMed sEMGpeak (μV) | 206 ± 100 1 | 113 ± 61 | 234 ± 96 1 | 215 ± 109 |
ST sEMGRMS (% max) | 31.0 ± 5.4 | 31.8 ± 5.0 3 | 32.5 ± 6.2 3 | 26.7 ± 5.5 |
ST sEMGpeak (μV) | 282 ± 158 1 | 155 ± 75 | 315 ± 156 1,3 | 218 ± 116 2 |
GM sEMGRMS (% max) | 32.0 ± 6.4 | 30.2 ± 6.8 | 33.6 ± 6.5 | 29.9 ± 5.8 |
GM sEMGpeak (μV) | 139 ± 142 | 99 ± 130 | 200 ± 143 1 | 160 ± 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maroto-Izquierdo, S.; García-López, D.; Beato, M.; Bautista, I.J.; Hernández-Davó, J.L.; Raya-González, J.; Martín-Rivera, F. Force Production and Electromyographic Activity during Different Flywheel Deadlift Exercises. Sports 2024, 12, 95. https://doi.org/10.3390/sports12040095
Maroto-Izquierdo S, García-López D, Beato M, Bautista IJ, Hernández-Davó JL, Raya-González J, Martín-Rivera F. Force Production and Electromyographic Activity during Different Flywheel Deadlift Exercises. Sports. 2024; 12(4):95. https://doi.org/10.3390/sports12040095
Chicago/Turabian StyleMaroto-Izquierdo, Sergio, David García-López, Marco Beato, Iker J. Bautista, José L. Hernández-Davó, Javier Raya-González, and Fernando Martín-Rivera. 2024. "Force Production and Electromyographic Activity during Different Flywheel Deadlift Exercises" Sports 12, no. 4: 95. https://doi.org/10.3390/sports12040095
APA StyleMaroto-Izquierdo, S., García-López, D., Beato, M., Bautista, I. J., Hernández-Davó, J. L., Raya-González, J., & Martín-Rivera, F. (2024). Force Production and Electromyographic Activity during Different Flywheel Deadlift Exercises. Sports, 12(4), 95. https://doi.org/10.3390/sports12040095