Comparison of Supervised versus Self-Administered Stretching on Bench Press Maximal Strength and Force Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Maximal Strength and Force Development Tests
2.3. Intervention
2.4. Data Analysis
3. Results
3.1. Isometric and Dynamic Bench Press
3.2. Force Development
4. Discussion
4.1. Potential Underlying Mechanisms to Explain Stretch-Mediated Strength Increases
4.2. Supervised versus Self-Administered
4.3. Contraction Specificity
4.4. Practical Applications
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reiman, M.P.; Lorenz, D.S. Integration of strength and conditioning principles into a rehabilitation program. Int. J. Sports Phys. Ther. 2011, 6, 241–253. [Google Scholar] [PubMed]
- Rutherford, O.M. Muscular coordination and strength training. Implications for injury rehabilitation. Sports Med. 1988, 5, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. J. Strength Cond. Res. 2017, 31, 3508–3523. [Google Scholar] [CrossRef] [PubMed]
- Andersen, V.; Prieske, O.; Stien, N.; Cumming, K.; Solstad, T.E.J.; Paulsen, G.; van den Tillaar, R.; Pedersen, H.; Saeterbakken, A.H. Comparing the effects of variable and traditional resistance training on maximal strength and muscle power in healthy adults: A systematic review and meta-analysis. J. Sci. Med. Sport 2022, 25, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Morie, M.; Reid, K.F.; Miciek, R.; Lajevardi, N.; Choong, K.; Krasnoff, J.B.; Storer, T.W.; Fielding, R.A.; Bhasin, S.; Lebrasseur, N.K. Habitual physical activity levels are associated with performance in measures of physical function and mobility in older men. J. Am. Geriatr. Soc. 2010, 58, 1727–1733. [Google Scholar] [CrossRef] [PubMed]
- Hotta, K.; Behnke, B.J.; Arjmandi, B.; Ghosh, P.; Chen, B.; Brooks, R.; Maraj, J.J.; Elam, M.L.; Maher, P.; Kurien, D.; et al. Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle. J. Physiol. 2018, 596, 1903–1917. [Google Scholar] [CrossRef] [PubMed]
- Schwendinger, F.; Pocecco, E. Counteracting Physical Inactivity during the COVID-19 Pandemic: Evidence-Based Recommendations for Home-Based Exercise. Int. J. Environ. Res. Public Health 2020, 17, 3909. [Google Scholar] [CrossRef]
- Behm, D.G.; Granacher, U.; Warneke, K.; Aragão-Santos, J.C.; Da Silva-Grigoletto, M.E.; Konrad, A. Minimalist Training: Is Lower Dosage or Intensity Resistance Training Effective to Improve Physical Fitness? A Narrative Review. Sports Med. 2023, 54, 289–302. [Google Scholar] [CrossRef]
- Luebbers, P.E.; Witte, E.V.; Oshel, J.Q.; Butler, M.S. Effects of Practical Blood Flow Restriction Training on Adolescent Lower-Body Strength. J. Strength Cond. Res. 2019, 33, 2674–2683. [Google Scholar] [CrossRef]
- Filipovic, A.; Kleinöder, H.; Dörmann, U.; Mester, J. Electromyostimulation--a systematic review of the effects of different electromyostimulation methods on selected strength parameters in trained and elite athletes. J. Strength Cond. Res. 2012, 26, 2600–2614. [Google Scholar] [CrossRef]
- Sadeghipour, S.; Mirzaei, B.; Korobeynikov, G.; Tropin, Y. Effects of Whole-Body Electromyostimulation and Resistance Training on Body Composition and Maximal Strength in Trained Women. Health Sport Rehabil. 2021, 7, 18–28. [Google Scholar] [CrossRef]
- Arntz, F.; Markov, A.; Behm, D.G.; Behrens, M.; Negra, Y.; Nakamura, M.; Moran, J.; Chaabene, H. Chronic Effects of Static Stretching Exercises on Muscle Strength and Power in Healthy Individuals Across the Lifespan: A Systematic Review with Multi-level Meta-analysis. Sports Med. 2023, 53, 723–745. [Google Scholar] [CrossRef] [PubMed]
- Panidi, I.; Donti, O.; Konrad, A.; Dinas, P.C.; Terzis, G.; Mouratidis, A.; Gaspari, V.; Donti, A.; Bogdanis, G.C. Muscle Architecture Adaptations to Static Stretching Training: A Systematic Review with Meta-Analysis. Sports Med. Open 2023, 9, 47. [Google Scholar] [CrossRef]
- Warneke, K.; Wirth, K.; Keiner, M.; Lohmann, L.H.; Hillebrecht, M.; Brinkmann, A.; Wohlann, T.; Schiemann, S. Comparison of the effects of long-lasting static stretching and hypertrophy training on maximal strength, muscle thickness and flexibility in the plantar flexors. Eur. J. Appl. Physiol. 2023, 123, 1773–1787. [Google Scholar] [CrossRef] [PubMed]
- Warneke, K.; Keiner, M.; Lohmann, L.H.; Hillebrecht, M.; Wirth, K.; Schiemann, S. The Influence of Maximum Strength Performance in Seated Calf Raises on Counter Movement Jump and Squat Jump in Elite Junior Basketball Players. Sport Mont 2022, 20, 63–68. [Google Scholar] [CrossRef]
- Möck, S.; Hartmann, R.; Wirth, K. Vertical jumping performance relates to the one-repetition maximum in the standing calf raise and in the squat. Ger. J. Exerc. Sport Res. 2023, 53, 139–147. [Google Scholar] [CrossRef]
- Wohlann, T.; Warneke, K.; Kalder, V.; Behm, D.G.; Schmidt, T.; Schiemann, S. Influence of 8-weeks of supervised static stretching or resistance training of pectoral major muscles on maximal strength, muscle thickness and range of motion. Eur. J. Appl. Physiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, N.; Ryushi, T. Effects of 6-Week Static Stretching of Knee Extensors on Flexibility, Muscle Strength, Jump Performance, and Muscle Endurance. J. Strength Cond. Res. 2021, 35, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Nosaka, K.; Chen, H.-L.; Lin, M.-J.; Tseng, K.-W.; Chen, T.C. Effects of flexibility training on eccentric exercise-induced muscle damage. Med. Sci. Sports Exerc. 2011, 43, 491–500. [Google Scholar] [CrossRef]
- Reiner, M.; Gabriel, A.; Sommer, D.; Bernsteiner, D.; Tilp, M.; Konrad, A. Effects of a High-Volume 7-Week Pectoralis Muscle Stretching Training on Muscle Function and Muscle Stiffness. Sports Med. Open 2023, 9, 40. [Google Scholar] [CrossRef]
- Warneke, K.; Hillebrecht, M.; Claassen-Helmers, E.; Wohlann, T.; Keiner, M.; Behm, D.G. Effects of a Home-Based Stretching Program on Bench Press Maximum Strength and Shoulder Flexibility. J. Sports Sci. Med. 2023, 22, 597–604. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Wackerhage, H.; Souza, E.D. Inter-set stretch: A potential time-efficient strategy for enhancing skeletal muscle adaptations. Front. Sports Act. Living 2022, 4, 1035190. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Sale, D.G. Velocity specificity of resistance training. Sports Med. 1993, 15, 374–388. [Google Scholar] [CrossRef]
- Warneke, K.; Wagner, C.-M.; Keiner, M.; Hillebrecht, M.; Schiemann, S.; Behm, D.G.; Wallot, S.; Wirth, K. Maximal strength measurement: A critical evaluation of common methods-a narrative review. Front. Sports Act. Living 2023, 5, 1105201. [Google Scholar] [CrossRef]
- Wohlann, T.; Warneke, K.; Hillebrecht, M.; Petersmann, A.; Ferrauti, A.; Schiemann, S. Effects of daily static stretch training over 6 weeks on maximal strength, muscle thickness, contraction properties, and flexibility. Front. Sports Act. Living 2023, 5, 1139065. [Google Scholar] [CrossRef]
- Nelson, A.G.; Kokkonen, J.; Winchester, J.B.; Kalani, W.; Peterson, K.; Kenly, M.S.; Arnall, D.A. A 10-week stretching program increases strength in the contralateral muscle. J. Strength Cond. Res. 2012, 26, 832–836. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988; ISBN 9781134742707. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Medeiros, D.M.; Lima, C.S. Influence of chronic stretching on muscle performance: Systematic review. Hum. Mov. Sci. 2017, 54, 220–229. [Google Scholar] [CrossRef]
- Warneke, K.; Keiner, M.; Hillebrecht, M.; Schiemann, S. Influence of One Hour versus Two Hours of Daily Static Stretching for Six Weeks Using a Calf-Muscle-Stretching Orthosis on Maximal Strength. Int. J. Environ. Res. Public Health 2022, 19, 11621. [Google Scholar] [CrossRef]
- Fleck, S.J.; Kraemer, W.J. Designing Resistance Training Programs, 4th ed.; Human Kinetics: Champaign, IL, USA, 2014; ISBN 0736081704. [Google Scholar]
- Goldspink, G.; Harridge, S. Cellular and Molecular Aspects of Adaptation in Skeletal Muscle. In Strength and Power in Sport: Olympic Encyclopedia of Sports Medicine, 2nd ed.; Komi, P., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2003; pp. 231–251. ISBN 9780632059119. [Google Scholar]
- Warneke, K.; Brinkmann, A.; Hillebrecht, M.; Schiemann, S. Influence of Long-Lasting Static Stretching on Maximal Strength, Muscle Thickness and Flexibility. Front. Physiol. 2022, 13, 878955. [Google Scholar] [CrossRef]
- Behm, D.G.; Kay, A.D.; Trajano, G.S.; Blazevich, A.J. Mechanisms underlying performance impairments following prolonged static stretching without a comprehensive warm-up. Eur. J. Appl. Physiol. 2021, 121, 67–94. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S. Chronic neural adaptations to unilateral exercise: Mechanisms of cross education. Exerc. Sport Sci. Rev. 2000, 28, 177–184. [Google Scholar] [PubMed]
- Zhou, S.; Zhang, S.-S.; Crowley-McHattan, Z.J. A scoping review of the contralateral effects of unilateral peripheral stimulation on neuromuscular function. PLoS ONE 2022, 17, e0263662. [Google Scholar] [CrossRef]
- Kubo, K.; Kanehisa, H.; Kawakami, Y.; Fukunaga, T. Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J. Appl. Physiol. 2001, 90, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Warneke, K.; Lohmann, L.H.; Lima, C.D.; Hollander, K.; Konrad, A.; Zech, A.; Nakamura, M.; Wirth, K.; Keiner, M.; Behm, D.G. Physiology of Stretch-Mediated Hypertrophy and Strength Increases: A Narrative Review. Sports Med. 2023, 53, 2055–2075. [Google Scholar] [CrossRef]
- Wortman, R.J.; Brown, S.M.; Savage-Elliott, I.; Finley, Z.J.; Mulcahey, M.K. Blood Flow Restriction Training for Athletes: A Systematic Review. Am. J. Sports Med. 2021, 49, 1938–1944. [Google Scholar] [CrossRef] [PubMed]
- McCully, K.K. The influence of passive stretch on muscle oxygen saturation. Adv. Exp. Med. Biol. 2010, 662, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.; Park, H. No significant correlation between the intensity of static stretching and subject’s perception of pain. J. Phys. Ther. Sci. 2017, 29, 1856–1859. [Google Scholar] [CrossRef] [PubMed]
- James, L.P.; Weakley, J.; Comfort, P.; Huynh, M. The Relationship Between Isometric and Dynamic Strength Following Resistance Training: A Systematic Review, Meta-Analysis, and Level of Agreement. Int. J. Sports Physiol. Perform. 2024, 19, 2–12. [Google Scholar] [CrossRef]
- Yahata, K.; Konrad, A.; Sato, S.; Kiyono, R.; Yoshida, R.; Fukaya, T.; Nunes, J.P.; Nakamura, M. Effects of a high-volume static stretching programme on plantar-flexor muscle strength and architecture. Eur. J. Appl. Physiol. 2021, 121, 1159–1166. [Google Scholar] [CrossRef]
- Murphy, A.J.; Wilson, G.J. Poor correlations between isometric tests and dynamic performance: Relationship to muscle activation. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 353–357. [Google Scholar] [CrossRef]
- Wilson, G.J.; Murphy, A.J. The use of isometric tests of muscular function in athletic assessment. Sports Med. 1996, 22, 19–37. [Google Scholar] [CrossRef] [PubMed]
- Wisløff, U.; Castagna, C.; Helgerud, J.; Jones, R.; Hoff, J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br. J. Sports Med. 2004, 38, 285–288. [Google Scholar] [CrossRef]
- Bragazzi, N.L.; Rouissi, M.; Hermassi, S.; Chamari, K. Resistance Training and Handball Players’ Isokinetic, Isometric and Maximal Strength, Muscle Power and Throwing Ball Velocity: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 2663. [Google Scholar] [CrossRef] [PubMed]
- Warneke, K.; Freundorfer, P.; Plöschberger, G.; Behm, D.G.; Konrad, A.; Schmidt, T. Effects of chronic static stretching interventions on jumping and sprinting performance-a systematic review with multilevel meta-analysis. Front. Physiol. 2024, 15, 1372689. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.J.; Christensen, B.; Gange, K.; Todden, C.; Hatterman-Valenti, H.; Albrecht, J.M. Chronic Stretching During 2 Weeks of Immobilization Decreases Loss of Girth, Peak Torque, and Dorsiflexion Range of Motion. J. Sport Rehabil. 2019, 28, 67–71. [Google Scholar] [CrossRef]
- Apostolopoulos, N.; Metsios, G.S.; Flouris, A.D.; Koutedakis, Y.; Wyon, M.A. The relevance of stretch intensity and position-a systematic review. Front. Psychol. 2015, 6, 1128. [Google Scholar] [CrossRef]
Group | N (Male/Female) | Age | Height (cm) | Weight (kg) |
---|---|---|---|---|
SVS | 21 (13/8) | 24.2 ± 2.4 | 177.9 ± 9.8 | 73.8 ± 15.2 |
HBS | 21 (13/8) | 24.4 ± 3.8 | 179.6 ± 7.7 | 76.4 ± 12.2 |
CG | 21 (13/8) | 24.3 ± 2.9 | 177.6 ± 8.8 | 74.6 ± 11.7 |
Maximal Strength | Group | Pre-Test (m ± SD) | Post-Test (m ± SD) | Change (m ± SD) | Time Effect | Time × Group |
---|---|---|---|---|---|---|
Isometric | SVS | 559.4 ± 234.1 N | 607.1 ± 249.3 N | +8.5% | p < 0.001 | p = 0.023 |
HBS | 582.2 ± 253.0 N | 619.4 ± 267.0 N | +6.4% | F = 18.191 | F = 3.997 | |
CG | 571.4 ± 326.1 N | 573.9 ± 234.0 N | +0.4% | ⴄp2 = 0.233 | ⴄp2 = 0.118 | |
Dynamic (1 RM) | SVS | 61.1 ± 20.6 kg | 65.7 ± 22.1 kg | +6.9% | p < 0.001 | p < 0.001 |
HBS | 62.6 ± 26.1 kg | 65.8 ± 26.4 kg | +4.9% | F = 48.666 | F = 16.253 | |
CG | 63.6 ± 24.4 kg | 63.3 ± 24.2 kg | −0.5% | ⴄp2 = 0.448 | ⴄp2 = 0.351 |
Force Development | Group | Pre-Test (m ± SD) | Post-Test (m ± SD) | Change (m ± SD) | Time Effect | Time × Group |
---|---|---|---|---|---|---|
Impulse 0.2 (N*s) | SVS | 235.0 ± 60.2 | 238.8 ± 60.7 | +1.7% | p = 0.117 | p = 0.604 |
HBS | 246.4 ± 64.7 | 247.2 ± 62.6 | −0.2% | F = 2.526 | F = 0.508 | |
CG | 236.6 ± 53.7 | 238.3 ± 56.4 | +0.5% | ⴄp2 = 0.040 | ⴄp2 = 0.017 | |
Impulse 0.5 (N*s) | SVS | 564.0 ± 141.8 | 572.6 ± 144.6 | +1.5% | p = 0.159 | p = 0.619 |
HBS | 596.1 ± 145.3 | 597.6 ± 144.2 | −0.1% | F = 2.033 | F = 0.484 | |
CG | 577.1 ± 135.2 | 580.3 ± 138.6 | +0.4% | ⴄp2 = 0.033 | ⴄp2 = 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wohlann, T.; Warneke, K.; Behm, D.G.; Schiemann, S. Comparison of Supervised versus Self-Administered Stretching on Bench Press Maximal Strength and Force Development. Sports 2024, 12, 109. https://doi.org/10.3390/sports12040109
Wohlann T, Warneke K, Behm DG, Schiemann S. Comparison of Supervised versus Self-Administered Stretching on Bench Press Maximal Strength and Force Development. Sports. 2024; 12(4):109. https://doi.org/10.3390/sports12040109
Chicago/Turabian StyleWohlann, Tim, Konstantin Warneke, David G. Behm, and Stephan Schiemann. 2024. "Comparison of Supervised versus Self-Administered Stretching on Bench Press Maximal Strength and Force Development" Sports 12, no. 4: 109. https://doi.org/10.3390/sports12040109
APA StyleWohlann, T., Warneke, K., Behm, D. G., & Schiemann, S. (2024). Comparison of Supervised versus Self-Administered Stretching on Bench Press Maximal Strength and Force Development. Sports, 12(4), 109. https://doi.org/10.3390/sports12040109