Dryland Performance Tests Are Not Good Predictors of World Aquatics Points in Elite Male and Female Swimmers
Abstract
:1. Background
2. Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Optojump®
2.5. Vertec® Jump
2.6. Standing Broad Jump
2.7. Strength Tests
2.8. Data Collection
2.9. Data Analysis
2.10. Bayesian Analysis
2.11. Defining Models and Priors
3. Results
3.1. Relationship between Jump Height and WA Points
3.2. Relationship between Strength Measures and WA Points
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
FINA | Fédération Internationale de Natation |
WA | World Aquatics |
HDI | High-density interval |
RM | Repetition maximum |
SBJ | Standing broad jump |
References
- Hołub, M.; Stanula, A.; Baron, J.; Głyk, W.; Rosemann, T.; Knechtle, B. Predicting breaststroke and butterfly stroke results in swimming based on Olympics history. Int. J. Environ. Res. Public Health 2021, 18, 6621. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.K.; Enes, A.A.; Sotomaior, B.B.; Barbosa, M.A.R.; De Souza, R.O.; Osiecki, R. Analysis of the performance of finalist swimming athletes in Olympic games: Reaction time, partial time, speed, and final time. J. Phys. Educ. Sport 2020, 20, 539–545. [Google Scholar]
- FINA. Swimming Points. Available online: https://www.fina.org/swimming/points (accessed on 14 August 2022).
- Keiner, M.; Wirth, K.; Fuhrmann, S.; Kunz, M.; Hartmann, H.; Haff, G.G. The influence of upper-and lower-body maximum strength on swim block start, turn, and overall swim performance in sprint swimming. J. Strength Cond. Res. 2021, 35, 2839–2845. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Cree, J.; Read, P.; Chavda, S.; Edwards, M.; Turner, A. Strength and conditioning for sprint swimming. Strength Cond. J. 2013, 35, 1–6. [Google Scholar] [CrossRef]
- Cuenca-Fernández, F.; López-Contreras, G.; Arellano, R. Effect on swimming start performance of two types of activation protocols: Lunge and YoYo squat. J. Strength Cond. Res. 2015, 29, 647–655. [Google Scholar] [CrossRef] [PubMed]
- West, D.J.; Owen, N.J.; Cunningham, D.J.; Cook, C.J.; Kilduff, L.P. Strength and power predictors of swimming starts in international sprint swimmers. J. Strength Cond. Res. 2011, 25, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Born, D.P.; Stöggl, T.; Petrov, A.; Burkhardt, D.; Lüthy, F.; Romann, M. Analysis of freestyle swimming sprint start performance after maximal strength or vertical jump training in competitive female and male junior swimmers. J. Strength Cond. Res. 2020, 34, 323–331. [Google Scholar] [CrossRef]
- Matúš, I.; Ružbarský, P.; Vadašová, B.; Czarny, W. Horizontal and vertical jumping abilities and kick start performance in competitive swimmers. J. Phys. Educ. Sport 2022, 22, 273–280. [Google Scholar]
- Calderbank, J.A.; Comfort, P.; McMahon, J.J. Association of jumping ability and maximum strength with dive distance in swimmers. Int. J. Sports Physiol. Perform. 2020, 16, 296–303. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Morris, J.; Folland, J.P. Validity of vertical jump measurement devices. J. Sports Sci. 2012, 30, 63–69. [Google Scholar] [CrossRef]
- Reynolds, J.M.; Gordon, T.J.; Robergs, R.A. Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. J. Strength Cond. Res. 2006, 20, 584–592. [Google Scholar] [PubMed]
- Cossor, J.; Mason, B. Swim start performances at the Sydney 2000 Olympic Games. In Proceedings of the XIXth International Symposium on Biomechanics in sports, San Francisco, CA, USA; pp. 70–74.
- Aoki, K.; Kohmura, Y.; Sakuma, K.; Koshikawa, K.; Naito, H. Relationships between field tests of power and athletic performance in track and field athletes specializing in power events. Int. J. Sports Sci. Coach. 2015, 10, 133–144. [Google Scholar] [CrossRef]
- Barry, L.; Lyons, M.; McCreesh, K.; Powell, C.; Comyns, T. The relationship between training load and pain, injury and illness in competitive swimming: A systematic review. Phys. Ther. Sport 2021, 48, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Wagenmakers, E.J.; Lee, M.; Lodewyckx, T.; Iverson, G.J. Bayesian versus frequentist inference. In Bayesian Evaluation of Informative Hypotheses; Springer: New York, NY, USA, 2008; pp. 181–207. [Google Scholar]
- Swinton, P.A.; Burgess, K.; Hall, A.; Greig, L.; Psyllas, J.; Aspe, R.; Maughan, P.; Murphy, A. Interpreting magnitude of change in strength and conditioning: Effect size selection, threshold values and Bayesian updating. J. Sports Sci. 2022, 40, 2047–2052. [Google Scholar] [CrossRef] [PubMed]
- Pollock, S.; Gaoua, N.; Johnston, M.J.; Cooke, K.; Girard, O.; Mileva, K.N. Training regimes and recovery monitoring practices of elite British swimmers. J. Sports Sci. Med. 2019, 18, 577. [Google Scholar] [PubMed]
- McKay, A.K.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Navarro, J.J.; López-Belmonte, Ó.; Gay, A.; Cuenca-Fernández, F.; Arellano, R. A new model of performance classification to standardize the research results in swimming. Eur. J. Sport Sci. 2023, 23, 478–488. [Google Scholar] [CrossRef] [PubMed]
- LeSuer, D.A.; McCormick, J.H.; Mayhew, J.L.; Wasserstein, R.L.; Arnold, M.D. The accuracy of prediction equations for estimating 1-RM performance in the bench press, squat, and deadlift. J. Strength Cond. Res. 1997, 11, 211–213. [Google Scholar]
- Anderson, M.; Hopkins, W.; Roberts, A.; Pyne, D. Ability of test measures to predict competitive performance in elite swimmers. J. Sports Sci. 2008, 26, 123–130. [Google Scholar] [CrossRef]
- Garrido, N.D.; Silva, A.J.; Fernandes, R.J.; Barbosa, T.M.; Costa, A.M.; Marinho, D.; Marques, M.C. High level swimming performance and its relation to non-specific parameters: A cross-sectional study on maximum handgrip isometric strength. Percept. Mot. Ski. 2012, 114, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Matthews, M.J.; Green, D.; Matthews, H.; Swanwick, E. The effects of swimming fatigue on shoulder strength, range of motion, joint control, and performance in swimmers. Phys. Ther. Sport 2017, 23, 118–122. [Google Scholar] [CrossRef]
- Lima-Borges, D.S.; Portilho, N.O.; Araújo, D.S.; Ravagnani, C.F.C.; Almeida, J.A. Anthropometry and physical performance in swimmers of different styles. Sci. Sports 2022, 37, 542–551. [Google Scholar] [CrossRef]
- Lee, S.; Cone, S.M.; Kim, S. A biomechanical comparison of self-selected and experimentally controlled speeds and grip widths during the bench press exercise. Sports Biomech. 2020, 22, 953–965. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, Y.; Matsunaga, N.; Akuzawa, H.; Kojima, T.; Oshikawa, T.; Iizuka, S.; Okuno, K.; Kaneoka, K. Difference in muscle synergies of the butterfly technique with and without swimmer’s shoulder. Sci. Rep. 2021, 12, 14546. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.R.; Lambert, M.I.; Hunter, A.M. Muscle activation in the loaded free barbell squat: A brief review. J. Strength Cond. Res. 2012, 26, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Hellard, P.; Scordia, C.; Avalos, M.; Mujika, I.; Pyne, D.B. Modelling of optimal training load patterns during the 11 weeks preceding major competition in elite swimmers. Appl. Physiol. Nutr. Metab. 2017, 42, 1106–1117. [Google Scholar] [CrossRef] [PubMed]
- McNulty, K.L.; Elliott-Sale, K.J.; Dolan, E.; Swinton, P.A.; Ansdell, P.; Goodall, S.; Thomas, K.; Hicks, K.M. The effects of menstrual cycle phase on exercise performance in eumenorrheic women: A systematic review and meta-analysis. Sports Med. 2020, 50, 1813–1827. [Google Scholar] [CrossRef] [PubMed]
- Elliott-Sale, K.J.; Minahan, C.L.; de Jonge, X.A.J.; Ackerman, K.E.; Sipilä, S.; Constantini, N.W.; Lebrun, C.M.; Hackney, A.C. Methodological considerations for studies in sport and exercise science with women as participants: A working guide for standards of practice for research on women. Sports Med. 2021, 51, 843–861. [Google Scholar] [CrossRef]
- Navalta, J.W.; Davis, D.W.; Stone, W.J. Implications for cisgender female underrepresentation, small sample sizes, and misgendering in sport and exercise science research. PLoS ONE 2023, 18, e0291526. [Google Scholar] [CrossRef]
- McNulty, K.; Olenick, A.; Moore, S.; Cowley, E. Invisibility of female participants in midlife and beyond in sport and exercise science research: A call to action. Br. J. Sports Med. 2024, 58, 180–181. [Google Scholar] [CrossRef] [PubMed]
- Costello, J.T.; Bieuzen, F.; Bleakley, C.M. Where are all the female participants in Sports and Exercise Medicine research? Eur. J. Sport Sci. 2014, 14, 847–851. [Google Scholar] [CrossRef] [PubMed]
Optojump | Total | ||||||
Sex | Distance | Freestyle | Breaststroke | Backstroke | Butterfly | Medley | n |
(n) | (n) | (n) | (n) | (n) | |||
Sprint | 4 | 2 | 1 | ||||
Male | Middle | 3 | 3 | 1 | 2 | ||
Long | 1 | ||||||
Total | 8 | 5 | 1 | 1 | 2 | 17 | |
Sprint | 2 | 1 | |||||
Female | Middle | 2 | |||||
Long | 1 | ||||||
Total | 1 | 2 | 1 | 2 | 6 | ||
Vertec | Total | ||||||
Sex | Distance | Freestyle | Breaststroke | Backstroke | Butterfly | Medley | n |
(n) | (n) | (n) | (n) | (n) | |||
Sprint | 2 | 8 | 3 | ||||
Male | Middle | 2 | 4 | 2 | 4 | ||
Long | |||||||
Total | 4 | 12 | 3 | 2 | 4 | 25 | |
Sprint | 3 | 1 | 2 | 2 | |||
Female | Middle | 4 | 1 | 1 | |||
Long | 1 | ||||||
Total | 8 | 2 | 3 | 2 | 15 | ||
Standing broad jump (SBJ) | Total | ||||||
Sex | Distance | Freestyle | Breaststroke | Backstroke | Butterfly | Medley | n |
(n) | (n) | (n) | (n) | (n) | |||
Sprint | 4 | 5 | 1 | ||||
Male | Middle | 3 | 2 | 1 | 3 | ||
Long | |||||||
Total | 7 | 7 | 1 | 1 | 3 | 19 | |
Sprint | 2 | 2 | 2 | ||||
Female | Middle | 3 | 1 | ||||
Long | 1 | ||||||
Total | 6 | 1 | 2 | 2 | 11 |
Barbell back squat | Total | ||||||
Sex | distance | Freestyle | Breaststroke | Backstroke | Butterfly | Medley | (n) |
(n) | (n) | (n) | (n) | (n) | |||
Sprint | 5 | 7 | 4 | ||||
Male | Middle | 4 | 5 | 1 | 1 | 2 | |
Long | 1 | ||||||
Total | 10 | 12 | 5 | 1 | 2 | 30 | |
Sprint | 1 | ||||||
Female | Middle | 1 | |||||
Long | |||||||
Total | 2 | 2 | |||||
Barbell deadlift | Total | ||||||
Sex | distance | Freestyle | Breaststroke | Backstroke | Butterfly | Medley | (n) |
(n) | (n) | (n) | (n) | (n) | |||
Sprint | 1 | 2 | 1 | ||||
Male | Middle | 2 | 2 | 1 | |||
Long | |||||||
Total | 3 | 4 | 1 | 1 | 9 | ||
Sprint | |||||||
Female | Middle | ||||||
Long | |||||||
Total | |||||||
Barbell bench press | Total | ||||||
Sex | distance | Freestyle | Breaststroke | Backstroke | Butterfly | Medley | (n) |
(n) | (n) | (n) | (n) | (n) | |||
Sprint | 4 | 5 | 2 | 1 | |||
Male | Middle | 4 | 1 | 1 | |||
Long | 1 | ||||||
Total | 9 | 6 | 2 | 1 | 1 | 19 | |
Sprint | |||||||
Female | Middle | ||||||
Long | |||||||
Total |
Male | Female | |||||
---|---|---|---|---|---|---|
Mean ± SD | Min | Max | Mean ± SD | Min | Max | |
Optojump®(cm) | 45.4 ± 5.56 | 37.1 | 55.2 | 33.52 ± 4 | 30.4 | 42.8 |
Vertec®(cm) | 61.81 ± 8.37 | 45.7 | 88 | 46.64 ± 8 | 35.6 | 67.5 |
SBJ (cm) | 260.83 ± 17.54 | 231 | 289 | 204.15 ± 15.91 | 178 | 231 |
Back Squat (kg/kg) | 1.41 ± 0.21 | 1.06 | 1.88 | 1.5 ± 0.03 | 1.48 | 1.52 |
Bench Press (kg/kg) | 1.26 ± 0.16 | 0.8 | 1.72 | |||
Deadlift (kg/kg) | 1.8 ± 0.31 | 1.42 | 2.31 |
Male | Female | Combined | ||||
---|---|---|---|---|---|---|
Optojumpcmj | Estimates | HDI | Estimates | HDI | Estimates | HDI |
Intercept (WA) | 803.2 | 668.6–944.2 | 820.8 | 679.8–961.2 | 813.1 | 710.1–909.7 |
Jump height (cm) | 0.6 | -2.8–3.8 | 0.6 | −4–5.1 | 0.4 | −2.2–2.9 |
Vertecmj | Estimates | HDI | Estimates | HDI | Estimates | HDI |
Intercept (WA) | 561.9 | 411–710.2 | 846 | 722.8–970 | 671.6 | 577.5–762.7 |
Jump reach height (cm) | 4.3 | 1.9–6.7 | −1.6 | −4.2–1.6 | 2.4 | 0.8–4.1 |
Standing broad jump (cm) | Estimates | HDI | Estimates | HDI | Estimates | HDI |
Intercept (WA) | 829.3 | 752.2–909.4 | 787.3 | 742.6–834.3 | 804.8 | 758.1–852.6 |
Jump distance (cm) | 0 | −0.2–0.3 | 0 | −0.1–0.2 | 0.1 | −0.1–0.2 |
Male | Female | Combined | ||||
---|---|---|---|---|---|---|
Back squat | Estimates | HDI | Estimates | HDI | Estimates | HDI |
Intercept (WA) | 838.1 | 727.7–954.5 | 679.2 | 242–1106.5 | 840 | 725.8–952.2 |
Relative strength(kg/kg) | 2.3 | −38.8–80.8 | 22 | −257.7–304.3 | −2.5 | −78.1–74.3 |
Deadlift | Estimates | HDI | ||||
Intercept (WA) | 853.4 | 716.6–982.1 | ||||
Relative strength (kg/kg) | −5 | −60–50.8 | ||||
Bench press | Estimates | HDI | ||||
Intercept (WA) | 801.8 | 566–1045 | ||||
Relative strength (kg/kg) | 41.8 | −155.5–230 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selvamoorthy, R.; Macgregor, L.J.; Donald, N.; Hunter, A.M. Dryland Performance Tests Are Not Good Predictors of World Aquatics Points in Elite Male and Female Swimmers. Sports 2024, 12, 104. https://doi.org/10.3390/sports12040104
Selvamoorthy R, Macgregor LJ, Donald N, Hunter AM. Dryland Performance Tests Are Not Good Predictors of World Aquatics Points in Elite Male and Female Swimmers. Sports. 2024; 12(4):104. https://doi.org/10.3390/sports12040104
Chicago/Turabian StyleSelvamoorthy, Ragul, Lewis J. Macgregor, Neil Donald, and Angus M. Hunter. 2024. "Dryland Performance Tests Are Not Good Predictors of World Aquatics Points in Elite Male and Female Swimmers" Sports 12, no. 4: 104. https://doi.org/10.3390/sports12040104
APA StyleSelvamoorthy, R., Macgregor, L. J., Donald, N., & Hunter, A. M. (2024). Dryland Performance Tests Are Not Good Predictors of World Aquatics Points in Elite Male and Female Swimmers. Sports, 12(4), 104. https://doi.org/10.3390/sports12040104